

Hughes Information Technology Corporation
Upper Marlboro, MD

305-CD-049-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Data Management Design Specification

for the ECS Project

October 1995

Hughes Information Technology Corporation

Upper Marlboro, Maryland

Flight Operations Segment (FOS)
Data Management Program Design Specification

for the ECS Project

October 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

APPROVED BY

Calvin Moore, FOS CCB Chairman Date
EOSDIS Core System Project

Cal Moore /s/ 9/29/95

ii 305-CD-049-001

This page intentionally left blank.

iii 305-CD-049-001

Preface

This document, one of nineteen, comprises the detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1
launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project
include:

305-CD-040 FOS Design Specification (Segment Level Design)

305-CD-041 Planning and Scheduling Design Specification

305-CD-042 Command Management Design Specification

305-CD-043 Resource Management Design Specification

305-CD-044 Telemetry Design Specification

305-CD-045 Command Design Specification

305-CD-046 Real-Time Contact Management Design Specification

305-CD-047 Analysis Design Specification

305-CD-048 User Interface Design Specification

305-CD-049 Data Management Design Specification

305-CD-050 Planning and Scheduling PDL

305-CD-051 Command Management PDL

305-CD-052 Resource Management PDL

305-CD-053 Telemetry PDL

305-CD-054 Real-Time Contact Management PDL

305-CD-055 Analysis PDL

305-CD-056 User Interface PDL

305-CD-057 Data Management PDL

305-CD-058 Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http://
edhs1.gsfc.nasa.gov.

iv 305-CD-049-001

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS
Configuration Management Plan, and changes to this document shall be made by document change
notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, MD 20774-5372

v 305-CD-049-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem
design.

Keywords: FOS, design, specification, analysis, IST, EOC

vi 305-CD-049-001

This page intentionally left blank.

vii 305-CD-049-001

Change Information Page

List of Effective Pages

Page Number Issue

Title Original

iii through xiv Original

1 -1 and 1-2 Original

2-1 through 2-4 Original

 3-1 through 3-164 Original

 AB-1 through AB-8 Original

GL-1 thtough GL-8 Original

Document History

Document
Number

Status/Issue Publication Date CCR Number

305-CD-049-001 Original October 1995 95-0654

viii 305-CD-049-001

This page intentionally left blank.

ix 305-CD-049-001

Contents

Preface

Abstract

Change Information Page

1. Introduction

1. Introduction ... 1-1
1.1 Identification .. 1-1
1.2 Scope ... 1-1
1.3 Purpose .. 1-1
1.4 Status and Schedule ... 1-1
1.5 Document Organization ... 1-1

2. Related Documentation

2.1 Parent Document.. 2-1
2.2 Applicable Documents... 2-1
2.3 Information Documents ... 2-2

2.3.1 Information Document Referenced.. 2-2

3. Data Management Subsystem

3.1 Data Management Subsystem Context Diagram .. 3-1
3.2 PDB Ingest ... 3-3

3.2.1 PDB Ingest Context .. 3-3
3.2.2 PDB Ingest Interfaces .. 3-5
3.2.3 PDB Ingest Object Model ... 3-5
3.2.4 PDB Ingest Dynamic Model ... 3-5
3.2.5 PDB Ingest Data Dictionary ... 3-13

3.3 PDB Validation .. 3-17
3.3.1 PDB Validation Context .. 3-17
3.3.2 PDB Validation Interfaces ... 3-17
3.3.3 PDB Validation Object Model ... 3-17
3.3.4 PDB Validation Dynamic Model ... 3-19
3.3.5 PDB Validation Data Dictionary ... 3-19

x 305-CD-049-001

3.4 PDB Edit .. 3-19
3.4.1 PDB Edit Context .. 3-19
3.4.2 PDB Edit Interfaces .. 3-19
3.4.3 PDB Edit Object Model ... 3-21
3.4.4 PDB Edit Dynamic Model ... 3-21
3.4.5 PDB Edit Data Dictionary ... 3-28

3.5 PDB Report... 3-38
3.5.1 PDB Report Context .. 3-38
3.5.2 PDB Report Interfaces ... 3-38
3.5.3 PDB Report Object Model ... 3-38
3.5.4 PDB Report Dynamic Model ... 3-44
3.5.5 PDB Report Data Dictionary ... 3-47

3.6 Operational Data Generation .. 3-53
3.6.1 Operational Data Generation Context .. 3-53
3.6.2 Operational Data Generation Interfaces ... 3-53
3.6.3 Operational Data Generation Object Model .. 3-53
3.6.4. Operational Data Generation Dynamic Model .. 3-54
3.6.5 Operational Data Generation Data Dictionary.. 3-67

3.7 DMS Event Processing .. 3-73
3.7.1 DMS Event Processing Context ... 3-73
3.7.2 DMS Event Processing Interfaces .. 3-74
3.7.3 DMS Event Processing Object Model ... 3-74
3.7.4 DMS Event Processing Dynamic Model .. 3-77

3.8 DMS Event Retrieval.. 3-84
3.8.1 DMS Event Retrieval Context .. 3-84
3.8.2 DMS Event Retrieval Interfaces ... 3-85
3.8.3 DMS Event Retrieval Object Model .. 3-85
3.8.4 DMS Event Retrieval Dynamic Model ... 3-88

3.9 DMS File Management, External Interfaces, Database Access 3-93
3.9.1 DMS File Management, External Interfaces, Database Access Context 3-93
3.9.2 DMS File Management, External Interfaces, Database Access Interfaces....... 3-95
3.9.3 DMS File Management, External Interfaces, Database Access Object............ 3-95
3.9.4 DMS File Management, External Interfaces, Database Access Dynamic3-99

3.10 DMS Telemetry Archiver ... 3-119
3.10.1 DMS Telemetry Archiver Context ...3-119
3.10.2 DMS Telemetry Archiver Interfaces ...3-119
3.10.3 DMS Telemetry Archiver Object Model ...3-120
3.10.4 DMS Telemetry Archival Dynamic Model ...3-120

xi 305-CD-049-001

3.10.5 DMS Telemetry Archiver Data Dictionary ..3-124

3.11 DMS Telemetry Playback Merger ...3-130
3.11.1 DMS Playback Merger Context ...3-130
3.11.2 DMS Telemetry Playback Merge Interfaces ..3-131
3.11.3 DMS Telemetry Playback Merge Object Model ... 3-131
3.11.4 DMS Telemetry Playback Merger Dynamic Model3-133
3.11.5 DMS Telemetry Playback Merger Data Dictionary3-138

3.12 DMS Telemetry Retrieval ..3-146
3.12.1 DMS Telemetry Retrieval Context ..3-146
3.12.2 DMS Telemetry Retrieval Interfaces ...3-149
3.12.3 DMS Telemetry Retrieval Object Model ...3-150
3.12.4 DMS Telemetry Retrieval Dynamic Model... 3-152
3.12.5 DMS Telemetry Retrieval Data Dictionary ... 3-158

Abbreviations and Acronyms

Glossary

Figures

3.1-1 DMS Context Diagram ... 3-2
3.2-1 PDB Ingest Context .. 3-4
3.2-2 PDB Ingest Object Model ... 3-6
3.2-3 PDB Ingest Object Model.. 3-7
3.2-4 PDB Ingest Object Model.. 3-8
3.2-5 PDB Ingest Object Model ... 3-9
3.2-6 PDB Ingest Object Model .. 3-10
3.2-7 PDB Ingest Event Trace ... 3-11
3.2-8 PDB Ingest State Diagram ... 3-12
3.3-1 PDB Validation Object Model ... 3-18
3.3-2 PDB Validation Event Trace .. 3-20
3.4-1 PDB Edit Object Model ... 3-22
3.4-2 PDB Edit Object Model ... 3-23
3.4-3 PDB Edit Object Model ... 3-24
3.4-4 PDB Edit Object Model ... 3-25
3.4-5 PDB Edit Event Trace .. 3-26
3.4-6 PDB Edit State Diagram .. 3-27
3.5-1 PDB Report Object Model ... 3-39
3.5-2 PDB Report Object Model ... 3-40

xii 305-CD-049-001

3.5-3 PDB Report Object Model ... 3-41
3.5-4 PDB Report Object Model ... 3-42
3.5-6 PDB Report Event Trace ... 3-45
3.5-7 PDB Report State Diagram .. 3-46
3.6-1 Operational Data Generation Object Model .. 3-55
3.6-2 Operational Data Generation Object Model .. 3-56
3.6-3 Operational Data Generation Object Model .. 3-57
3.6-4 Operational Data Generation Object Model .. 3-58
3.6-5 Operational Data Generation Object Model ... 3-59
3.6-6 Operational Data Generation Object Model .. 3-60
3.6-7 Operational Data Generation Event Trace.. 3-62
3.6-8 Operational Data Generation Event Trace ... 3-63
3.6-9 Operational Data Generation Event Trace ... 3-64
3.6-10 Operational Data Generation Event Trace ... 3-65
3.6-11 Operational Data Generation State Diagram ... 3-66
3.7-1 DMS Event Processing Context ... 3-75
3.7-2 DMS Event Processing Object Model ... 3-76
3.7-3 DMS Event Procesing Event Trace ... 3-78
3.8-1 DMS Event Retrieval Context Diagram ... 3-86
3.8-2 DMS Event Retrieval Object Model .. 3-87
3.8-3 DMS Event Retrieval Event Trace .. 3-89
3.9-1 DMS File Management, External Interfaces,Database Access Context Diagram 3-94
3.9-2 DMS File Management, External Interfaces, Database Access Object Model 3-96
3.9-3 DMS File Management, External Interfaces, Database Access Object Model 3-97
3.9-4 DMS File Management, External Interfaces, Database Access Object Model 3-98
3.9-5 DMS File Storage Event Trace .. 3-100
3.9-6 DMS File Retrieval Event Trace ..3-102
3.9-7 DMS Sybase Table Access Event Trace ..3-104
3.9-8 DMS FDF Interface Event Trace... 3-106
3.10-1 DMS Telemetry Archiver Context Diagram ..3-121
3.10-2 DMS Telemetry Archiver Object Model ...3-122
3.10-3 DMS Telemetry Archiver Event Trace.. 3-123
3.11-1 DMS Telemetry Playback Merger Context Diagram .. 3-132
3.11-2 DMS Telemetry Playback Merger Object Model.. 3-134
3.11-3 DMS Telemetry Playback Merger Scenario 1 Event Trace....................................... 3-135
3.11-4 DMS Telemetry Playback Merger Scenario 2 Event Trace3-137
3.12-1 DMS Telmetry Retrieval Context Diagram... 3-148
3.12-2 DMS Telemetry Retrieval Object Model ...3-151
3.12-3 DMS Telemetry Retrieval Scenario 1 Event Trace ...3-153

xiii 305-CD-049-001

3.12-4 DMS Telemetry Retrieval Scenario 2 Event Trace ...3-155
3.12-5 DMS Telemetry Retrieval Scenario 3 Event Trace ... 3-157

Tables

3.2-1 PDB Ingest Interfaces .. 3-5
3.7-1 DMS Event Processing Interfaces ... 3-74
3.8-1 DMS Event Retrieval Interfaces ... 3-85
3.9-1 DMS File Management, External Interfaces, Database Access Interfaces 3-95
3.10.2 DMS Telemetry Archiver Interface ...3-119
3.11-1 Telemetry Playback Merge Interfaces ...3-131
3.12-1 DMS Telemetry Retrieval Interfaces ... 3-149

xiv 305-CD-049-001

This page intentionally left blank.

1-1 305-CD-049-001

1. Introduction

1.1 Identification
The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL Item 046
305/DV2 under Contract NAS5-60000.

1.2 Scope
The Flight Operations Segment (FOS) Design Specification defines the detailed design of the FOS.
It allocates the level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 053, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated December
6, 1994. It covers releases A and B for FOS. This corresponds to the design to support the AM-1
launch.

1.3 Purpose
The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule
This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. This document is under the ECS Project configuration
control.

1.5 Document Organization
305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.

305-CD-042 contains the detailed design for Command Management Design Specification.

305-CD-043 contains the detailed design for Resource Management Design Specification.

305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Real-Time Contact Management Design
Specification.

1-2 305-CD-049-001

305-CD-047 contains the detailed design for Analysis Design Specification.

305-CD-048 contains the detailed design for User Interface Design Specification.

305-CD-049 contains the detailed design for Data Management Design Specification.

305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

2-1 305-CD-049-001

2. Related Documentation

2.1 Parent Document
The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 2: AM-1 Mission Specific

2.2 Applicable Documents
The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS) and
the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM1 Project Spacecraft Software Development
and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schema for the ECS Project

502-ICD-JPL/GSFC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Jet Propulsion Laboratory and the Goddard Space Flight
Center for GSFC Missions Using the Deep Space Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Mission Operations Centers
and the Network Control Center Data System

530-ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Payload Operations Control
Centers and the Network Control Center Data System

2-2 305-CD-049-001

530-DFCD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Data Format control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

540-041 Interface Control Document (ICD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

560-EDOS-0230.0001 Goddard Space Flight Center/MO&DSD, Earth Observing
System (EOS) Data and Operations System (EDOS) Data Format
Requirements Document (DFRD)

ICD-106 Martin Marietta Corporation, Interface Control Document (ICD)
Data Format Control Book for EOS-AM Spacecraft

none Goddard Space Flight Center, Earth Observing System (EOS)
AM-1 Flight Dynamics Facility (FDF) / EOS Operations Center
(EOC) Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design
Specification.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS Project

308-CD-001-004 Software Development Plan for the ECS Project

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the ECS
Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

604-CD-002-001 Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

604-CD-003-001 ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

194-WP-912-001 EOC/ICC Trade Study Report for the ECS Project, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, Working Paper

194-WP-920-001 An Evaluation of OASIS-CC for Use in the FOS, Working Paper

194-TP-285-001 ECS Glossary of Terms

222-TP-003-006 Release Plan Content Description

2-3 305-CD-049-001

none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations
System (EDOS), and the EOS Ground System (EGS) Elements,
Preliminary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-4 305-CD-049-001

This page intentionally left blank.

3-1 305-CD-049-001

3. Data Management Subsystem

The Data Management Subsystem (DMS) provides services for database update and retrieval, file
and table management, external interfaces, and data archival and retrieval. The DMS provides the
capability to update the Project Database with the spacecraft definitions and the instrument
definitions. The DMS generates an operational database from the Project Database. The DMS
provides services to all FOS subsystems for retrieval of the operational database. The DMS
provides file and table management services so that application software will have the capability
to store and retrieve data files, and add, update, delete and retrieve from database tables. The DMS
provides an interface to FDF, EDOS, and SCDO. The DMS provides services for archiving and
retrieving telemetry data, and events data.

3.1 Data Management Subsystem Context Diagram
The DMS interfaces with the other FOS subsystems and with external entities. These interfaces
are shown in Figure 3.1-1.

User Interface Subsystem - The FOS User Interface Subsystem interfaces with the DMS when
retrieving format definitions, procedures, reports, event history, templates, and other data files.
The DMS receives request for data files, event history requests, analysis requests, and replay
requests from the User Interface Subsystem. User Interface Subsystem sends procedures,
templates, and definitions to the DMS for storage.

Spacecraft and Instrument Manufacturer - The Spacecraft and Instrument Manufacturer provide
the spacecraft and instrument definitions to the DMS. Technical documentation about the
spacecraft and instruments are stored by the DMS.

SCDO Ingest and Data Server - The DMS sends data to the SCDO Ingest for long term storage,
and retrieves long term data from the SCDO Data Server.

Resource Management Subsystem - The Resource Management Subsystem interfaces with the
DMS when requesting default configuration procedure, and database ids. The database ids are
used when retrieving a database during replay of telemetry. The DMS provides the database ids
and default configuration procedures to the Resource Management Subsystem.

Real-Time Contact Manager - The DMS receives Nascom blocks, performance data, and events
from the Real-Time Contact Manager. The data is made available by the DMS.

Analysis Subsystem - The DMS provides historical telemetry data, and telemetry databases to the
Analysis subsystem. The Analysis Subsystem needs limits, calibration curves, and analysis
algorithms from the telemetry database so that statistics can be generated from the telemetry data.
The DMS also provides FDF Orbital Information to the Analysis for statistics purposes. Analysis
results generated from telemetry data and FDF Orbital Information are stored by the DMS and are
made available by the DMS for quick access. Analysis events are stored by the DMS.

SCDO Management Subsystem - The DMS sends status to the SCDO Management Subsystem.
The status contains information about the configuration and state of application software in the
DMS. The DMS receives events from the SCDO Management Subsystem.

3-2
305-C

D
-049-001

FOS Data
Management

FOS Command

FOS Command
Management

FOS Planning &
Scheduling

FOS User
Interface

FOS Telemetry

FOS Analysis

FOS Resource
Management

SCDO Data
Server

FOS
Development

Facility

Spacecraft &
Instrument

Manufacturer

IP ICC

SCDO
Ingest

MSS

EDOS

Real-Time
Contact
Manager

FDF

This System

P&S Information, Orbit Data, Events

Memory Dump,Cmd DB, Activity DB, Table Formats,
Constraint DB, Spacecraft Model Info, Navigation Ops,

Orbit Maneuver Params

Loads, Reports, Ground Script, Events,
Memory Model Updates

Tlm DB, Replayed EDU's,
Expected S/C State

EDUs, Events, Memory Dump

Analysis Results,
Events

Analysis Results, Tlm DB,
FDF Orbital Info, Historical EDU's

DMS Requests, Procedures, Events,
Templates, Definitions, Analysis Requests,

Replay Requests

Operator Support
Documentation

Technical Documentation,
Spacecraft & Instrument

Definitions

Events

Storage Status, Long
Term Archive Data

Loads,
Cmd DB

Spacecraft Definition Data, P&S Info,
Real-Time Command Info

Spacecraft Status Data,Validated PDB,
Instrument Database Information

Database Requests,
Database Updates

Archive Data, Metadata
Data Requests

Status

Events

Definitions, Procedures, Reports,
Event History, Templates, Data Files

Back Orbit
Tlm File

DCP Request,
DBid Request,

DCP,
DB Ids

Nascom Blocks, Events,
CODAs, Undected Fault Notification

FDF Products

Figure 3.1-1. DMS Context Diagram

3-3 305-CD-049-001

Telemetry Subsystem - The DMS provides the telemetry database to the Telemetry Subsystem.
The Telemetry Subsystem needs the telemetry database when decommutating real-time and replay
telemetry. The Telemetry Subsystem sends real-time housekeeping telemetry, memory dumps,
and telemetry events to the DMS for storage.

IP ICC - The DMS receives database requests and database updates from an IP ICC, sends
spacecraft status data and database information to an IP ICC.

Planning and Scheduling Subsystem - The DMS provides the spacecraft definitions database and
planning and scheduling information to the Planning and Scheduling Subsystem. The Planning
and Scheduling Subsystem uses the activity and constraint definitions from the spacecraft
definitions database. The DMS provides storage for the orbital data that Planning and Scheduling.
Planning and Scheduling events are stored by the DMS.

Command Management Subsystem - The DMS provides the command database, activity database,
constraint database and files used to support planned operations to the Command Management
subsystem. Activity definitions, constraint definitions and command definitions from the database
are used when generating command loads. The DMS provides a storage area for command loads,
memory dumps, and ground scripts. Command Management events and reports are stored by the
DMS.

Command Subsystem - The DMS provides the command database to the Command subsystem.
The database is used during a real-time contact to build commands to be uplinked to the spacecraft.
The DMS provides previously generated loads (e.g., microprocessor memory loads) from the FOS
file storage area to the Command subsystem for uplink to the spacecraft. Command events
generated by the Command subsystem are stored by the DMS.

FOS Development Facility - The Operator Support Documentation generated by the FOS
Development Facility is stored at the DMS for later use by the User Interface Subsystem.

 Flight Dynamics Facility - The DMS receives orbital information from the Flight Dynamics
Facility. The orbital information is validated and stored in data files and database tables.

3.2 PDB Ingest

3.2.1 PDB Ingest Context

The PDB Context diagram represents the interface overview of the FOS Database. Definitions are
received from external sources to the Data Management Subsystem, processed within, and made
available for operational use to other FOS Subsystems.

3-4
305-C

D
-049-001

Spacecraft &
Instrument

Manufacturer

Instrumentors

Flight
Operations

Team

Real-Time
S/S

Command
S/S

Planning
and

Scheduling

Command
Management

S/S

Analysis
S/S

FOS
User

Interface
S/S

Project
Data
Base

Activity
ODT

Constraint
ODT

Telemetry
ODT

Command
ODT

FOS Database

DataManagement Subsystem

Telemetry
ODF

Command
ODF

CEV
ODF

This System

Instrument Updates

Activity & Constraint ODTs

Telemetry ODF

Command ODF

PDB Inputs/Updates

Telemetry & Command Database

Command,Constraint, & Activity ODT,
CEV ODF

Telemetry ODF

Telemetry ODF

PDB Reports

PDB Reports

Figure 3.2-1. PDB Ingest Context

3-5 305-CD-049-001

3.2.2 PDB Ingest Interfaces

3.2.3 PDB Ingest Object Model

The base class FdDbPDBInput represents the input definitions to the EOS AM-1 Project Database
(PDB). It consists of the subclasses FdDbTelemetryDefs, FdDbCommandDefs, FdDbConstraint-
Defs, FdDbActivityDefs. Additionally, the input definitions are provided by the Integration &
Test Database, the FOT and as updates from the Instrument Operations Teams.

FdDbProjectDatabase represent the EOS AM-1 Project Database (PDB) that resides at the EOC.
This collection of telemetry, command, constraint and activity definitions are derived from the
base class FdDbProjectDatabase and are presented in the subclasses FdDbTelemetryPDB, FdDb-
CommandPDB, FdDbConstraintPDB, FdDbActivityPDB, respectively.

The FdDbLoadPDBInput class is responsible for controlling the loading of the PDB input defini-
tions into the PDB structure at the EOC. Upon completion of this process, the PDB resides as the
FdDbUnvalProjectDatabase class where it awaits validation.

3.2.4. PDB Ingest Dynamic Model

3.2.4.1 PDB Ingest Scenario Abstract

The PDB Ingest scenario describes the process of loading the definitions files into the PDB data-
base table structures at the EOC.

Table 3.2-1. PDB Ingest Interfaces
Interface
Service

Interface Class Interface Class
Description

Service Provider Service
User

Frequency

Invoke PDB
Database
Initialization

FdDbFuiInterface Provide interface
screens to invoke
PDB Database
Initialization

FUI DMS upon
delivery of
IT database

Invoke PDB
Ingest

FdDbFuiInterface Provide interface
screens to invoke
PDB Ingest

FUI DMS as needed

Invoke PDB
Edits

FdDbFuiInterface Provide interface
screens to invoke
PDB Edits

FUI DMS as needed

Invoke PDB
Reporting

FdDbFuiInterface Provide interface
screens to invoke
PDB Reporting

FUI DMS after PDB
validation
as needed

3-6
305-C

D
-049-001

FdDbProjectDatabase

mySCID
myCreateDate
myPDBType

FdDbTelemetryPDB FdDbCommandPDB FdDbActivityPDB FdDbConstraintPPDB

myTlmName
myTlmSource

myCmdName myActName myConName

myCmdSource myActSource myConSource

FdDbPDBInput

Integration &
Test Database

Instrument
Updates

FOT
provided

definitiions

myPDBFname

FdDbTelemetryDefs FdDbCommandDefs FdDbActivityDefs FdDbConstraintDefs

myTlmFname myCmdFname myActFname myConFname

myRecLen

FdDbInitPDB

CrePDBStruct

LoadTlmPDB
LoadCmdPDB
LoadActPDB
LoadConPDB

myNoFiles

myValidFlag

FdDbUnvalProjectDatabase FdDbValProjectDatabase

FdDbFuiInterface

FdDbFuiInterface

FdDbLoadPDBInput

provides
command
definitionsprovides

telemetry
mnemonics

provides
valid

activities

provides valid commands

initiated by

provides data

invokes

invokes

Figure 3.2-2. PDB Ingest Object Model

3-7
305-C

D
-049-001

FdDbTelemetryPDB

FdDbLimitSet

FdDbRYLimitFdDbDeltaLimit

FdDbCalCurve

FdDbAnalogTlm

FdDbTlmParm FdDbTlmPacket

FdDbTlmDesc

FdDbDerivedTlm
FdDbDscState

FdDbTlmConst

myPktApid
myPktLen
myPktDesc

myPktApid
myTlmMnem
myDataRep

myTlmName
myTlmSource

myTlmMnem
myLimitSet
mySwitMnem
myMinValue
myMaxValue

myTlmMnem
myLimitSet
myDNEUInd
myRedLow
myYellowLow
myYellowHigh
myRedHigh

myTlmMnem
myDNEUInd
myDeltaValue

myConvNum
myConvName
myCZero
myCOne
myCTwo
myCThree
myCFour
myCFive

myTlmInst

myConstMnem
myConstType
myConstValue
myConstDesc

myPktOffset
myParmSize
myCycleID
myDeltaTime

myTlmMnem
myMinValue
myMaxValue
myStateText

myTlmMnem

myScaleFactor

myInputFmt
myConvType
myConvNum

myDataUnits myDrvMnem
myDrvUnits
myCompRate
myInputOp1
myCalFlag1
myOper1
myInputOp2
myCalFlag2
myOper2
myInputOp3
myCalFlag3
myOper3
myInputOp4
myCalFlag4
myOper4
myInputOp5
myCalFlag5
myOper5
myInputOp6
myCalFlag6

myTlmMnem

myMjrAssem
myCompName
mySubassem
myRTIDName
myTlmType
myParmType
mySCCReqFlg
myTlmDesc

FdDbContxtDep

myTlmMnem
myCntxtMnem
myDNEUInd
myLowVal
myHighVal

myTlmPID

FdDbUnvalTlmPDB FdDbValTlmPDB

provides delta definitions

describes

provides valid telemetry references

located
in

provides limit boundaries

2-4

references

references

provides analog
characteristics

references

defined by

provides
selection
criteria

provides
equation

provides telemetry references

Figure 3.2-3. PDB Ingest Object Model

3-8
305-C

D
-049-001

FdDbCommandPDB

FdDbCmdVerifyFdDbCmdPrestate FdDbCmdParmFdDbCmdDesc FdDbFixCmd FdDbVarCmd

myCmdName

myCmdMnem
myCmdType
myRTName
myRTSubadd
myWordCnt
myWordType
mySafetyLvl

myCmdMnem
myCEVMnem
myDNEUInd
myLowVal
myHighVal

myCmdMnem
myPrereqMnem
myDNEUInd
myLowVal

myCmdMnem

myMjrAssem

mySubassem
myCmdDesc

myCmdMnem
myWrdNum
myDataValue

myCmdMnem
mySubfldName
myDefltValue
mySubfldLen
myDestFirstBit
myDestLastBit

myMaxVal

myStrtAdd
myNumMskWrds

FdDbTlmDesc

FdDbTblDef FdDbFldDef FdDbMemMask

myTblNum
myTblMnem
myTblType

myMaxSize
myTblDesc

myTblNum
myFldNum
myFldDesc

myScaleFact

myValType
myDefltValue

myRgChkFlg

myLowVal
myHighVal
myValOvrFlg

myCmdSource

myTlmMnem

myStartAdd
myHighVal

myTimeOut

myTlmPID
myMjrAssem
myCompName
mySubassem
myRTIDName
myTlmType
myParmType
mySCCReqFlg
myTlmDesc

myCmdPID

myCompName

myValBitSize
myDataUnits

FdDbUnvalCmdPDB FdDbValCmdPDB

FdDbVarState

myMinVal

myStateText

references

references

describes
defined by

1-33

defined by

0-10
verified

by

defined by

verified
by

Figure 3.2-4. PDB Ingest Object Model

3-9
305-C

D
-049-001

FdDbConstraintPDB

myConName

FdDbOpMode FdDbOpModeTranFdDbActConstrt

FdDbCmdConstrt

FdDbConsumeCon FdDbFOV

myConSource

myResName
myModeName
myPwrConsumpt
myDataRate

myResName
myModeTrans

myConstrtRule myResName
myMaxConsumVal

myResName
mySwathType
mySwathDim

myConstrtRule

FdDbActivityDef

myActName
myOwner
myResID
myStrtTrig
myOvrdFlag
myStrtTrigDelta
myMinDur
myDuration
myDurOvrdFlag
myEntryModes
myMode
myExitMode

FdDbCmdParm

myCmdMnem
myCmdType
myRTName
myRTSubadd
myCmdDest
myWordCnt
myWordType
myCmdLen
mySafetyLvl

FdDbUnvalConPDB FdDbValConPDB

FdDbActConPDB

 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString

references

references

Figure 3.2-5. PDB Ingest Object Model

3-10
305-C

D
-049-001

FdDbActivityPDB

FdDbActivityDef

myActName

myActName
myOwner
myResID
myStrtTrig
myOvrdFlag
myStrtTrigDelta
myMinDur
myDuration
myDurOvrdFlag
myEntryModes
myMode
myExitMode

FdDbActCmd FdDbActCmdParm

myActName
myCmdMnem
mySSInd
myDeltaTime
myCmdType

myActName
myCmdMnem
myParmName
myLowLimit
myHighLimit
myValidVals
myDefaultVal
myModFlag

FdDbCmdParm

myActSource

myCmdMnem
myCmdType
myRTName
myRTSubadd
myCmdDest
myWordCnt
myWordType
myCmdLen
mySafetyLvl

FdDbCmdConstrt

myConstrtRule

FdDbUnvalActPDB FdDbValActPDB

FdDbECLDirList FdDbCmdProcList

 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString
 - : RWTime
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCSting

references

verified by verified by

references

verified by verified by

Figure 3.2-6. PDB Ingest Object Model

3-11
305-C

D
-049-001

FdDbUnvalProjectDatabaseFOT DBAIntergration & Test Database FdDbPDBInputInstrument Updates
User

Interface

transmit PDB defintions to the FOS

provide PDB
definitions

select DB
Utilities menu

from User Interface

display
DB Utilities

menu

select
PDB Ingest

option

load PDB input

invoke PDB
ingest

provide
PDB

updates

initialize database

Figure 3.2-7. PDB Ingest Event Trace

3-12
305-C

D
-049-001

Database Idle/
Wait for DBA to
invoke database

initialization

Database Idle/
Wait for DBA

to invoke
data load

Database Idle/
Wait for DBA

to edit or invoke
validation

Database Idle/
Wait for DBA

action

edit PDB

generate ODB invoked/ODB generated

new I&T
database
received

database
initialization

invoked/
database
initialized

data load invoked/
data loaded

generate report
invoked/report

generated

database validation invoked

database validation complete/
additional edits desired

Figure 3.2-8. PDB Ingest State Diagram

3-13 305-CD-049-001

3.2.4.2 PDB Ingest Summary Information

Interfaces:

User Interface

Stimulus:

DBA selection of the PDB ingest option

Desired Response:

The loading of the telemetry, command, constraint and activity definitions into the PDB
database table structures.

Pre-Conditions:

Database up and running.

Database table structures have been initialized.

Definitions files have been transferred to a dedicated directory at the EOC.

Post-Conditions:

The PDB definitions have been loaded into the internal database structures.

3.2.4.3 PDB Ingest Scenario Description

PDB ingest is an operational function invoked by the Database Administrator (DBA). The selec-
tion of the PDB ingest option from the Database Utilities menu begins the process of loading the
definitions files into the database table structure at the EOC. Upon completion, the PDB is ready
for validation.

3.2.5 PDB Ingest Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

Class Name: FdDbActConPDB

The Activity Constraint PDB class represents the activity-level constraints that are defined for
instruments, spacecraft subsystems and ground system components.

Class Name: FdDbActConstrt

The Activity Constraint class represents the activity-level constraints rules.

Class Name: FdDbActCmd

The Activity Command class provides the definitions of commands that make up a specific
activity.

3-14 305-CD-049-001

Class Name: FdDbActCmdParm

The Activity Command Parameter class provides the definitions of the parameters for each com-
mands that makes up a specific activity.

Class Name: FdDbActivityDef

The Activity Definition class provides the attributes of an activity.

Class Name: FdDbActivityPDB

The Activity PDB represents the activity definition files used to support FOS operations.

Class Name: FdDbAnalogTlm

The Analog Telemetry class provides characteristic information about analog telemetry parame-
ters.

Class Name: FdDbCalCurve

The Calibration Curve class defines the coefficients used to convert raw telemetry values into EUs.
Each polynomial calibration equation may specify up to 6 coefficients (e.g., 5th order polynomial).
At a minimum, each equation must contain 2 coefficients.

Class Name: FdDbCmdConstrt

The Command Constraint class indicates the command-level constraints that are defined for instru-
ments, spacecraft subsystems and ground system components.

Class Name: FdDdCmdDesc

The Command Description class provides descriptive information about a spacecraft or instrument
command parameter.

Class Name: FDbCmdParm

The Command Parameter class defines a spacecraft or instrument command which is used to sup-
port the EOS AM-1 spacecraft.

Class Name: FdDbCmdVerify

The Command Execution Verification (CEV) class defines telemetry parameters used to verify the
reception and execution of an associated command by the spacecraft subsystem or instrument.

Class Name: FdDbCommandPDB

The Command PDB class represents the command definitions files needed to support commanding
of the EOS AM-1 spacecraft.

3-15 305-CD-049-001

Class Name: FdDbConstraintPDB

The Constraint PDB class represents the constraint definition files needed to support constraint
checking for commands and activities during FOS operations.

Class Name: FdDbConsumeCon

The Consumable Constraint class represents a modeling parameter that can be consumed and re-
plenished.

Class Name: FdDbDeltaLimit

The Delta Limit class defines delta limit checking criteria associated with an analog telemetry pa-
rameter.

Class Name: FdDbDerivedTlm

The Derived Telemetry class defines simple equations that combine previously defined analogs,
discretes, constants and other derived parameters via arithmetic or logical functions.

Class Name: FdDbDscState

The Discrete States class associates a single text state to a range of values for a discrete telemetry
parameter.

Class Name: FdDbFixCmd

The Fixed Data Word Specification class defines the optional data words associated with a com-
mand.

Class Name: FDbFldDef

The Table Field Definition class defines entries within the spacecraft or instrument table.

Class Name: FdDbFOV

The Field-Of-View Specification class identifies the shape and dimensions associated with an in-
strument or spacecraft subsystem sensor swath.

3-16 305-CD-049-001

Class Name: FdDbLimitSet

The Limit Selection Specification class defines the selection criteria for setting telemetry parame-
ter limits.

Class Name: FDbMemMask

The Memory Masking Definition class identifies an area of spacecraft instrument memory which
is ignored when comparing the dump and ground memory image.

Class Name: FdDbOpMode

The operational mode identifies an operational state associated with an instrument, spacecraft sub-
system or EOC ground system component.

Class Name: FdDbOpModeTran

The Operational Mode Specification class indicates the valid operational state transitions for in-
strument, spacecraft subsystems or ground system components as defined at the level mode.

Class Name: FdDbProjectDatabase

The Project Database class represents the telemetry, command, constraint and activity definition
files needed to support FOS operations.

Class Name: FdDbRYLimit

The Red/Yellow Limit Specification record defines the red/yellow - high/low limit checking crite-
ria associated with an analog or discrete telemetry parameter.

Class Name: FdDbTblDef

The Table Definition class defines area of the spacecraft or instrument memory.

Class Name: FdDbTelemetryPDB

The Telemetry PDB class represents the telemetry definition files needed to support telemetry pro-
cessing during FOS operations.

Class Name: FdDbTlmDesc

The Telemetry Description class provides descriptive information about a telemetry parameter.

3-17 305-CD-049-001

Class Name: FdDbTlmPacket

The Telemetry Packet Specification class defines valid CCSDS packets for processing by the FOS.

Class Name: FdDbTlmParm

The Telemetry Parameter Specification class provides the mapping tables used to decommutate the
downlink telemetry streams into specific analog or discrete telemetry mnemonics.

Class Name: FDbVarCmd

The Command Variable Data Word Specification class defines the subfields associated with vari-
able type commands.

Class Name: FdDbVarStates

The Variable States class provides the states associated with a subfield.

3.3 PDB Validation

3.3.1 PDB Validation Context

Refer to Section 3.2.1

3.3.2 PDB Validation Interfaces

Refer to Section 3.2.2

3.3.3 PDB Validation Object Model

The FdDbProjectDatabase class represent the AM-1 Project Database (PDB). This collection of
definitions files is stored at the EOC, validated and made available for operational use. These files
are made up of telemetry, command, constraint and activity definitions (FdDbTelemetryPDB, Fd-
DbCommandPDB, FdDbConstraintPDB, FdDbActivityPDB). The PDB Validation Object Model
reflects the process from which the PDB is taken from the class, FdDbUnvalProjectDatabase, to
the class, FdDbValProjectDatabase. The FdDbUnvalProjectDatabase class represents the PDB
when it has been loaded into the internal PDB structures at the EOC. The FdDbValProjectData-
base class represents the definition files once they have been validated.

Each of the PDB validation subclasses (FdDbValidateTlm, FdDbValidateCmd, FdDbValidate-
Con, FdDbValidateAct) is derived from the FdDbValidatePDB base class. They are responsible
for controlling the validation of each type of PDB definition.

The FdDbValSumLog class is responsible for maintaining errors found during the validation pro-
cess.

3-18
305-C

D
-049-001

FdDbProjectDatabase

mySCID
myCreateDate
myPDBType

FdDbValidatePDB

mySCID
myPDBType
myValType

FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB

myTlmName
myTlmSource

myCmdName
myCmdSource

myActName
myActSource

myConName
myConSource

myValidFlag

FdDbUnvalProjectDatabase
FdDbValProjectDatabase

FdDbValidateCmd FdDbValidateConFdDbValidateTlm FdDbValidateAct

VerifyTlmRules
XvalTlmRef

VerifyCmdRules
XvalCmdRef

VerifyActRules
XvalActRef

FdDbValSumLog

mySCID
myPDBType
myPDBName

ViewLog
PrintLog

EnableVal

myPDBItem
myErorNum
myErrorMsg

FdDbFuiInterface

provides
valid telemetry

mnemonics

provides valid
command mnemonics

provides
valid

command
mnemonics

provides
valid

activity
names

validated by

produces

creates

invokes

Figure 3.3-1. PDB Validation Object Model

3-19 305-CD-049-001

3.3.4. PDB Validation Dynamic Model

3.3.4.1 PDB Validation Scenario Abstract

The PDB validation scenario describes the process in which the definitions files used to support
FOS operations are validated.

3.3.4.2 PDB Validation Summary Information

Interfaces:
User Interface

Stimulus:
DBA selection of PDB validation

Desired Response:
The creation of the validated telemetry, command, constraint and activity PDB.
Creation and generation of a PDB validation summary log.

Pre-Conditions:
Database up and running.
Database table structures have been initialized.
PDB definitions have loaded into the internal database table structures.

Post-Conditions:
Validated PDB

3.3.4.3 PDB Validation Scenario Description

PDB validation is an operational function invoked by the Database Administrator (DBA).
Through the selection of the PDB validation option on the Database Utilities menu, this process
begins with the validation of the telemetry definitions. PDB validation is ordered by the PDB type
to ensure the integrity of the definitions. Next, the command definitions are validated, followed
by the validation of the constraint and activities definitions. The telemetry and command defini-
tions are provided by the AM-1 integration and test database. Each time changes occur to the te-
lemetry and command definitions maintained at the EOC, validation of the entire PDB is required.
Constraint and activity definitions are provided by the FOT through the use of database interface
tools. The changes to this data occur independent of the telemetry and command definition chang-
es. For this reason, the constraint and activity PDB may also be validated when only their changes
occur. Validation errors are reported in a validation summary log.

3.3.5 PDB Validation Data Dictionary

Reference Section 3.2.5 PDB Ingest Data Dictionary.

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

3.4 PDB Edit

3.4.1 PDB Edit Context

Refer to Section 3.2.1.

3.4.2 PDB Edit Interfaces

Refer to Section 3.2.2.

3-20
305-C

D
-049-001

DBA FdDbUnvalProjectDatabase FdDbValProjectDatabaseFdDbValidatePDB
User

Interface FdDbValSumLog

cross-validate activity definitions

update command definition
as valid

cross-validate command definitions

update activity definition
as valid

verify activity rules

enable constraint validation

select DB Utilities menu
from User Interface

select complete
validation option

verify command rules

update telemetry definition
as valid

verify telemetry rules

cross-validate telemetry definitions

update constraint definition
as valid

enable activity validation

display DB Utilities menu

display
validation options

select PDB
Validation option

invoke PDB validation

enable telemetry validation

return telemetry
validation statusdisplay telemetry

validation status
enable command validation

return command
validation status

display command
validation status

return constraint
validation status

display constraint
validation status

return activity
validation status

display activity
validation status

update validation
summary

update validation
summary

update validation
summary

update validation
summary

Figure 3.3-2. PDB Validation Event Trace

3-21 305-CD-049-001

3.4.3 PDB Edit Object Model

FdDbEditPDB represents the database editor interface class to perform edits to the AM-1 Project
Database (PDB). The FdDbUnvalProjectDatabase class provides data to the FdDbEditPDB class.
(The FdDbUnvalProjectDatabase class is derived from the FdDbProjectDatabase class and is
described in Section 3.2.) The FdDbEditPDB class is made up of the FdDbEditTlmScrn,
FdDbEditCmdScrn, FdDbEditActScrn, and FdDbEditConScrn subclasses. The FdDbEditPDB
class provides the capability to retrieve data, delete data, save data, and move between data records
in the case of a multi-record retrieval. All edits made to the PDB are logged by the FdDbEditLog
class. This class provides the capability to send the log to the printer or view the log from the
screen.

3.4.4 PDB Edit Dynamic Model

3.4.4.1 PDB Edit Scenario Abstract

3.4.4.2 PDB Edit Summary Information

Interfaces:

User Interface

Stimulus:

DBA selection of the PDB Edit option

Desired Response:

Edits to the unvalidated PDB

Pre-Conditions:

The database is up and running.

The user has privileges to edit data.

Post-Conditions:

Modified data is stored in the database.

3.4.4.3 PDB Edit Scenario Description

The Project Data Base (PDB) Edit process is initiated through the selection of the Project Data
Base (PDB) Edit option on the Database Utilities Menu by a user authorized to make edits to the
unvalidated PDB.

The user specifies which PDB data to edit through User Interface prompts. Once the user has made
data type selections, the database edit screen is invoked with the data fields displayed. (This screen
was developed using a database manipulation COTS product.)

The database editor screen consists of data fields and database manipulation buttons. The buttons
are used to query data from the database, manipulate records retrieved from the database, clear data
from the data fields, and save new or modified data to the database tables. Edit messages are dis-
played on the bottom of the screen.

The editor can be exited by selecting an exit button on the screen.

3-22
305-C

D
-049-001

FdDbEditLog

FdDbProjectDatabase

mySCID

myCreateDate
myPDBType

FdDbEditPDB

myEditType

myTimeStamp

FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB
myTlmName
myTlmSource

myCmdName
myCmdSource

myActName
myActSource

myConName
myConSource

myPDBVersion

myUserID

myChange

ViewLog

myValidFlag

PrintLog

RetrieveData

DeleteData
NextRecord
PreviousRecord

SaveData

FdDbUnvalProjectDatabaseFdDbValProjectDatabase

FdDbEditCmdScrn FdDbEditConScrnFdDbEditActScrnFdDbEditTlmScrn

[continued] [continued] [continued][refer to PAS]

FdDbFuiInterface

provides
valid telemetry

mnemonics

provides valid
command mnemonics

provides
valid

command
mnemonics

provides
valid

activity
names

edited by

produces

invokes

Figure 3.4-1. PDB Edit Object Model

3-23
305-C

D
-049-001

FdDbEditLocationFlds

myLimitSet

mySwitMnem

myMinValue
myMaxValue

myRedLow
myRedHigh
myYellowLow
myYellowHigh

myConstType

myConstDesc
myConstValue

FdDbEditTlmConstFlds

FdDbEditDeltaFlds

myDeltaValue

FdDbEditLimitSetFlds

myScalefactor
myInputFmt

myConvType
myConvNum

myDataUnits

FdDbEditAnalogFlds

myConvName
myCZero
myCOne
myCTwo
myCThree
myCFour
myCFive

myPktApid

myDataRep
myTlmInst

myPktOffset

myParmSize

myCycleId

myDeltaTime

myMjrAssem
myCompNamemyTlmType

myParmType

mySCCReqFlg

myTlmStDesc
myPktDesc

myMaxValue
myMinValue

myStateText

FdDbEditDerivedTlmFlds

myDrvUnits
myCompRate
myInputOp1
myCalFlag1
myOper1
myInputOp2
myCalFlag2
myOper2
myInputOp2

myOper3
myCalFlag3

myInputOp4
myCalFlag4
myOper4
myInputOp5
myCalFlag5
myOper5
myInputOp6
myCalFlag6

FdDbEditTlmScrn

myContxtMnem
myDNEUInd
myLowVal
myHighVal

FdDbEditTlmParmsScrn FdDbEditDerivedScrn
FdDbEditConstScrn

myPktLen
mySubAssem
myRTIDName

myTlmPID myDNEUInd

FdDbEditDscStateFlds FdDbEditContxtDepFlds
FdDbEditTlmDescFlds

myDNEUInd

FdDbEditTlmMnemFld

FdDbEditLocationScrn FdDbEditAnalogScrn FdDbEditLimitsScrn
FdDbEditDscStatesScrn FdDbEditContxtDepScrn FdDbEditTlmDescScrn

Figure 3.4-2. PDB Edit Object Model

3-24
305-C

D
-049-001

FdDbEditCmdDefFlds

myPrereqMnem

myLowVal
myHighVal

FdDbEditCmdVerifyFlds FdDbEditPreStateFlds

myCevMnem

myLowVal
myHighVal
myTimeOut

myMjrAssem

mySubAssem
myCmdStDesc

myCmdType

myRTName
myRTSubadd

myWordCnt
myWordType

myCmdLen

mySafetyLvl

FdDbEditFixCmdFlds

myWrdNum
myDataValue

FdDbEditVarCmdFlds

mySubfldName
myDefltValue
mySubfldLen
mySrcFirstBit
myDestFirstBit
myDestLastBit

FdDbEditTblDefFlds

myTblNum
myTblMnem
myTblType
myStartAdd
myMaxSize
myTblDesc

FdDbEditMemMaskFlds

myStrtAdd
myNumMskWrds

FdDbEditFldDefFlds

myFldNum
myFldDesc
myScaleFact
myValType
myDefltValue

myRgChkFlg
myLowVal
myHighVal
myValOvrFlg

FdDbEditCmdScrn

myValBitSize
myDataUnits

myDNEUIndmyDNEUInd

myCmdPID
myCompName

FdDbEditCmdParmsScrn
FdDbEditMemMaskScrn FdDbEditTblDefScrn

FdDbEditCmdDescFlds

FdDbEditVarStateFlds

myMinVal
myMaxVal
myStateText

FdDbEditCmdVerifyScrn FdDbEditPreStateScrn FdDbEditFixCmdScrn FdDbEditVarCmdScrn FdDbEditCmdConScrn FdDbEditCmdDescScrn

FdDbEditCmdMnemFld

FdDbEditCmdDefScrn

myCmdDest

0-8

0-4 1-33 0-10

Figure 3.4-3. PDB Edit Object Model

3-25
305-C

D
-049-001

FdDbEditPreRuleFlds
FdDbEditPostRuleFlds FdDbEditBitRuleFlds FdDbEditTelemetryRuleFldFdDbEditOffsetFld FdDbEditScalarRuleFldsFdDbEditNoExistRuleFld

FdDbEditRepeatAfterRuleScrn FdDbEditNoRtCmdsRuleScrnFdDbEditNoCmdsBeforeRuleScrn FdDbEditNoCmdsAfterRuleScrn

myExcluder

myMaxTime
myMinTime myMaxTime

myMinTime

myComparisonBits
myDataField
myNotFlag
mySubfieldName

myOffset myText myExcluder myComparisonValue
myDataField
mySubfieldName
myOperator

FdDbEditSatisfier

FdDbEditDataFieldFlds

FdDbEditComparisonBits

mySatisfier

myNumber
mySubfieldName

myBitLocation
myValue

FdDbEditConScrn

FdDbEditActConScrn FdDbEditCmdConScrn

FdDbEditTriggerFld FdDbEditHardSoftFlagFld

[refer to PAS]

FdDbEditPreRuleScrn FdDbEditPostRuleScrn FdDbEditBitRuleScrn FdDbEditOffsetRuleScrn FdDbEditTelemetryRuleScrn FdDbEditNoExistRuleScrn FdDbEditScalarRuleScrn

myTrigger myHardSoftFlag

FdDbEditPacifier

myPacifier

myExcluder

myvalue

1+

1+

0-10 0-10

1+

Figure 3.4-4. PDB Edit Object Model

3-26
305-C

D
-049-001

User
User

Interface
DB

Editor
Tool

Unvalidated
PDB

Edit
Log

invoke the PDB editor screen

display retrieved data

make edits to change data

commit database edits

select PDB Edits from
the Database Utilities Menu

display PDB Edits screen

update edit log

display table level validation errors

exit PDB Edits Screen

select Database Utilities
Menu from FUI

Database Utilities Menu displayed

enter data selection criteria (name/mnemonic) for edits or deletes

enter new data

select delete data

select cancel

screen fields cleared

select exit PDB Reporting screen

return edit status

select exit Database
Utilities Menu

exit Database Utilities Menu

Figure 3.4-5. PDB Edit Event Trace

3-27
305-C

D
-049-001

Wait for
DatabaseUtilites

Menu
selection

Wait for edits
and/or database

manipulation
commands

Wait for FUI
to initiate the

Database Utilities
Menu

Wait for
Edit options

selection

Database manipulation
commands selected

(search,commit,delete)/
command executed and

status displayed

screen edits made/
changes validated
against database

table level constraints
and errors displayed

cancel screen selected/
edits fields cleared

Database Utilities
Menu displayed

PDB Edits selected/
edit options displayed

PDB Edit option selected/
database editor invoked

exit screen selected/
database editor exited

other utility selected from menu/
PDB Edits option exitedexit menu selected/

menu exited

Figure 3.4-6. PDB Edit State Diagram

3-28 305-CD-049-001

3.4.5 PDB Edit Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

Class Name: FdDbEditActScrn

Description: The Edit Activity Screen class provides the user interface window for
editing the activity PDB.

Class Name: FdDbEditAnalogFlds

Description: The Edit Analog Fields class provides the fields associated with the
telemetry parameter analog definitions for editing.

Class Name: FdDbEditAnalogScrn

Description: The Edit Analog Screen class provides the user interface window for
editing the telemetry parameter analog definitions.

Class Name: FdDbEditBitRuleFlds

Description: The Edit Bit Rule Fields class provides the fields associated
 with the command constraint bit rule definitions for editing.

Class Name: FdDbEditBitRuleScrn

Description: The Edit Bit Rule Screen class provides the user interface window
for editing the command constraint bit rule definitions.

Class Name: FdDbEditCmdParmsScrn

Description: The Edit Command Parameters Screen class provides the user interface
window for editing the command parameter definitions.

Class Name: FdDbEditCmdDescFlds

Description: The Edit Command Description Fields class provides the fields associated
 with the command parameter description definitions for editing.

Class Name: FdDbEditCmdDescScrn

Description: The Edit Command Description Screen class provides the user interface
window for editing the command parameter description definitions.

3-29 305-CD-049-001

Class Name: FdDbEditCmdConfFlds

Description: The Edit Command Constraint Fields class provides the fields associated
 with the command parameter constraints for editing.

Class Name: FdDbEditCmdConScrn

Description: The Edit Command Constraints Screen class provides the user interface
window for editing the command parameter constraint definitions.

Class Name: FdDbEditCmdDefFlds

Description: The Edit Command Definition Fields class provides the fields associated
 with the command parameter definitions for editing.

Class Name: FdDbEditCmdDefScrn

Description: The Edit Command Definitions Screen class provides the user interface window
for editing the command parameter definitions.

Class Name: FdDbEditCmdDescFlds

Description: The Edit Command Description Fields class provides the fields associated
 with the command parameter description definitions for editing.

Class Name: FdDbEditCmdDescScrn

Description: The Edit Command Description Screen class provides the user interface
window for editing the command parameter description defintions.

Class Name: FdDbEditCmdMnemFld

Description: The Edit Command Mnemonic Field class provides the field associated
with the command mnemonic for editing.

Class Name: FdDbEditCmdScrn

Description: The Edit Command Screen class provides the user interface window for
editing the command PDB.

Class Name: FdDbEditCmdVerifyFlds

Description: The Edit Command Verify Fields class provides the fields associated
 with the command parameter verify definitions for editing.

3-30 305-CD-049-001

Class Name: FdDbEditCmdVerifyScrn

Description: The Edit Command Verify Screen class provides the user interface
window for editing the command parameter verify definitions.

Class Name: FdDbEditComparisonBitsFlds

Description: The Edit Comparison Bits Fields class provides the fields associated with
the command constraint comparison bits definition associated with a
symbol defintion for editing.

Class Name: FdDbEditConScrn

Description: The Edit Constraint Screen class provides the user interface window for
editing the constraint PDB.

Class Name: FdDbEditContxtDepFlds

Description: The Edit Context Dependent Fields class provides the fields associated
with the telemetry parameter context dependent definitions for editing.

Class Name: FdDbEditContxtDepScrn

Description: The Edit Context Dependent Screen class provides the user interface
window for editing the telemetry parameter context dependent definitions.

Class Name: FdDbEditDataFieldFlds

Description: The Edit Data Field Fields class provides the fields associated with the
command constraint data fields definition associated with a pre rule or a
post rule for editing.

Class Name: FdDbEditDeltaFlds

Description: The Edit Delta Limit Fields class provides the fields associated with the
telemetry parameter delta limit definitions for editing.

Class Name: FdDbEditDerivedTlmFlds

Description: The Edit Derived Telemetry Fields class provides the fields associated
with the derived telemetry definitions for editing.

3-31 305-CD-049-001

Class Name: FdDbEditDerivedTlmScrn

Description: The Edit Derived Screen class provides the user interface window for
editing the derived telemetry definitions.

Class Name: FdDbEditDscStateFlds

Description: The Edit Discrete State Fields class provides the fields associated with the
telemetry parameter discrete state definitions for editing.

Class Name: FdDbEditDscStatesScrn

Description: The Edit Discrete States Screen class provides the user interface window
 for editing the telemetry parameter discrete state definitions.

Class Name: FdDbEditFixCmdFlds

Description: The Edit Fixed Command Fields class provides the fields associated
 with the command parameter fixed command definitions for editing.

Class Name: FdDbEditFixCmdScrn

Description: The Edit Fixed Command Screen class provides the user interface
window for editing the command parameter fixed state definitions.

Class Name: FdDbEditHardSoftFlagFld

Description: The Edit Hard Soft Flag Field class provides the field associated
 with the command constraint hard/soft flag for editing.

Attributes:

myHardSoftFlag: string

Description: hard/soft flag identifies the hard/soft flag defined for the
specifiec command constraint

Class Name: FdDbEditLimitSetFlds

Description: The Edit Limit Set Fields class provides the fields associated with the
telemetry parameter limit set definitions for editing.

3-32 305-CD-049-001

Class Name: FdDbEditLimitsScrn

Description: The Edit Limits Screen class provides the user interface window for
editing the telemetry parameter limits definitions.

Class Name: FdDbEditLocationFlds

Description: The Edit Location Fields class provides the fields associated with the
Telemetry Parameter Location definitions for editing.

Class Name: FdDbEditLocationScrn

Description: The Edit Location Screen class provides the user interface window for
editing the Telemetry Parameter Location definitions.

Class Name: FdDbEditMemMaskFlds

Description: The Edit Memory Mask Fields class provides the fields associated
with the command memory mask definitions for editing.

Class Name: FdDbEditMemMaskScrn

Description: The Edit Memory Mask Screen class provides the user interface window
for editing the telemetry memory mask definitions.

Class Name: FdDbEditPacifier

Description: The Edit Pacifier class provides the field associated
 with the command post rule constraint pacifier for editing.

Class Name: FdDbNoCmdsAfterRuleFlds

Description: The Edit No Commands After Rule Screen class provides the user
interface window for editing the command constraint no
commands after rule offset rule.

Class Name: FdDbNoCmdsBeforeRuleFlds

Description: The Edit No Commands Before Rule Screen class provides the user
interface window for editing the command constraint no
commands before rule offset rule.

3-33 305-CD-049-001

Class Name: FdDbEditNoExistRuleFld

Description: The Edit No Exist Rule Fld class provides the field associated
 with the command constraint no exist rule definition for editing.

Class Name: FdDbEditNoExistRuleScrn

Description: The Edit No Exist Rule Screen class provides the user interface windowfor edit-
ing the command constraint no exist rule definitions.

Class Name: FdDbNoRTCmdsRuleScrn

Description: The Edit No Real-time Commands Rule Screen class provides the user
interface window for editing the command constraint no real-time commands

rule offset rule.

Class Name: FdDbEditOffsetFld

Description: The Edit Offset Field class provides the field associated with the command
constraint offset rules for editing.

Class Name: FdDbEditOffsetRuleScrn

Description: The Edit Offset Screen class provides the user interface window
for editing the command constraint offset rule definitions.

Class Name: FdDbEditPDB

Description: The Edit PDB class represents the edit screen for editing the PDB
data definitions.

Attributes:

myEditType: string

Description:edit type indicates the type of data being edited
(telemetry, commmand, activity, constraint)

Operations:

FdDbPDBEdit :: DeleteData

Description:the operation to delete the record associated with the
data on the screen

FdDbPDBEdit :: NextRecord

3-34 305-CD-049-001

Description:the operation to display the next record in the
retrieval buffer

FdDbPDBEdit :: PreviousRecord

Description:the operation to display the previous record in
the retrieval buffer

FdDbPDBEdit :: RetrieveData

Description:the operation to retrieve data from the database for
the data criteria specified on the screen

FdDbPDBEdit :: SaveData

Description:the operation to save data to the database that has
been entered on the screen

Class Name: FdDbEditPreRuleFlds

Description: The Edit Pre Rule Fields class provides the fields associated
 with the command constraint pre rule definitions for editing.

Class Name: FdDbEditPreRuleScrn

Description: The Edit Pre Rule Screen class provides the user interface window
for editing the command constraint pre rule definitions.

Class Name: FdDbEditPostRuleFlds

Description: The Edit Post Rule Fields class provides the fields associated
 with the command constraint post rule definitions for editing.

Class Name: FdDbEditPostRuleScrn

Description: The Edit Post Rule Screen class provides the user interface window
for editing the command constraint post rule definitions.

Class Name: FdDbEditPreStateFlds

Description: The Edit Prerequisite State Fields class provides the fields associated
 with the command parameter prerequisite state definitions for editing.

3-35 305-CD-049-001

Class Name: FdDbEditPreStateScrn

Description: The Edit Prerequisite State Screen class provides user interface
window for editing the command parameter prerequisite state definitions.

Class Name: FdDbEditRepeatAfterRuleFlds

Description: The Edit Repeat After Rule Field class provides the field associated with
the command constraint repeat after rule definition associated with
an offset rule for editing.

Class Name: FdDbEditScalarRuleFlds

Description: The Edit Scalar Rule Fields class provides the fields associated with
the command constraint scalar rule definitions for editing.

Class Name: FdDbEditScalarRuleScrn

Description: The Edit Scalar Rule Screen class provides the user interface
window for editing the command constraint scalar rule definitions.

Class Name: FdDbEditSatisfier

Description: The Edit Satisfier class provides the field associated
 with the command pre rule constraint satisfier for editing.

Class Name: FdDbEditTblDefFlds

Description: The Edit Table Definition Fields class provides the fields associated
with the command table definitions for editing.

Class Name: FdDbEditTblDefScrn

Description: The Edit Table Definitions Screen class provides the user interface
 window for editing the telemetry table definitions.

Class Name: FdDbEditTlmConstFlds

Description: The Edit Telemetry Constant Fields class provides the fields associated
with the telemetry constants defintions for editing.

3-36 305-CD-049-001

Class Name: FdDbEditTlmConstScrn

Description: The Edit Constant Screen class provides the user interface window for
editing the telemetry constant definitions.

Class Name: FdDbEditTlmDescFlds

Description: The Edit Telemetry Description Fields class provides the fields associated
with the telemetry parameter description definitons for editing.

Class Name: FdDbEditTlmDescScrn

Description: The Edit Telemetry Description Screen class provides the user interface
window for editing the telemetry description definitions.

Class Name: FdDbEditTlmParmsScrn

Description: The Edit Telemetry Parmeters Screen class provides the user interface
 window for editing the telemetry parameter definitions.

Class Name: FdDbEditLog

Description: The Edit Log class represents a record of edits made to the PDB.

Attributes:

myChange: string

Description the type of edit performed on the PDB information.

myPDBVersion: integer

Description the current version of the PDB.

myTimeStamp: string

Description the date and time of the change made to the PDB.

myUserID: string

Description the identification of the user making changes to the PDB.

3-37 305-CD-049-001

Operations:

FdDbEditLog::PrintLog

Description: operation to print the edit log.

FdDbEditLog::ViewLog

Description: operation to view the edit log.

Class Name: FdDbEditTlmScrn

Description: The Edit Telelmetry Screen class provides the user interface window for
editing the telemetry PDB.

Class Name: FdDbEditTlmParmScrn

Description: The Edit Telelmetry Parameter Screen class provides the user interface window for
editing the telemetry parameter definitions.

Class Name: FdDbEditTelemetryRuleFld

Description: The Edit Telemetry Field class provides the field associated
with the command constraint telemetry rule definitions.

Class Name: FdDbEditTelemetryRuleScrn

Description: The Edit Telemetry Screen class provides the user interface window
for editing the command constraint telemetry rule definitions.

Class Name: FdDbEditTlmScrn

Description: The Edit Telemetry Screen class provides the user interface window
for editing the telemetry definitions.

Class Name: FdDbEditTriggerFld

Description: The Edit Trigger Field class provides the fields associated
 with the command trigger for editing command constraint definitions.

Class Name: FdDbEditVarCmdFlds

Description: The Edit Variable Command Fields class provides the fields associated
 with the command paremater variable command definitions for editing.

3-38 305-CD-049-001

Class Name: FdDbEditVarCmdScrn

Description: The Edit Variable Command Screen class provides the user interface
window for editing the variable command parameter definitions.

Class Name: FdDbEditVarStateFlds

Description: The Edit Variable State Fields class provides the fields associated
 with the command parameter variable state definitions for editing.

3.5 PDB Report

3.5.1 PDB Report Context

Refer to Section 3.2.1.

3.5.2 PDB Report Interfaces

Refer to Section 3.2.2.

3.5.3 PDB Report Object Model

FdDbReportPDB represents the database reporting interface class to generate, view, or print re-
ports on the AM-1 Project Database (PDB). The FdDbValProjectDatabase provides data to the Fd-
DbReportPDB class. (The FdDbValProjectDatabase class is derived from the
FdDbProjectDatabase class and is described in Section 3.2.) The FdDbReportPDB class is made
up of the FdDbTlmRpt, FdDbCmdRpt, FdDbActRpt, and FdDbConRpt subclasses. The FdDbRe-
portPDB class provides the capability to view or print existing reports, or invoke a reporting tool
to generate a report.

3-39
305-C

D
-049-001

FdDbTlmRpt FdDbCmdRpt FdDbActRpt

FdDbProjectDatabase

mySCID
myCreateDate
myPDBType

FdDbReportPDB

myRptType

FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB
myTlmName
myTlmSource

myCmdName
myCmdSource

myActName
myActSource

myConName
myConSource

myValidFlag

FdDbUnvalProjectDatabase FdDbValProjectDatabase

GenerateRpt
ViewRpt
PrintRpt

[continued] [continued]

FdDbConRpt

[continued] [continued]

FdDbFuiInterface

provides
valid telemetry

mnemonics

provides valid
command mnemonics

provides
valid

command
mnemonics

provides
valid

activity
names

reported
by

invokes

Figure 3.5-1. PDB Report Object Model

3-40 305-CD-049-001

FdDbTlmRpt

FdDbLimitSetRptFdDbDeltaLimitRpt

FdDbCalCurveRpt

FdDbAnalogTlmRpt

FdDbTlmParmRpt

FdDbTlmPacketRpt

FdDbTlmDescRpt

FdDbDerivedTlmRpt FdDbTlmConstRpt

myPktApid
myPktLen
myPktDesc

myTlmMnem
myDataRep

myRptName
myRptType

myLimitSet
mySwitMnem
myMinValue
myMaxValue
myRedLow
myYellowLow
myYellowHigh
myRedHigh

myDNEUInd

myDeltaValue

myConvNum
myConvName
myCZero
myCOne
myCTwo
myCThree
myCFour
myCFive

myTlmInst

myConstMnem
myConstType
myConstValue
myConstDesc

myPktOffset
myParmSize
myCycleID
myDeltaTime

myMinValue
myMaxValue

myStateText
myScaleFactor

myInputFmt
myConvType
myConvNum

myDataUnits

myDrvMnem
myDrvUnits
myCompRate
myInputOp1
myCalFlag1
myOper1
myInputOp2
myCalFlag2
myOper2
myInputOp3
myCalFlag3
myOper3
myInputOp4
myCalFlag4
myOper4
myInputOp5
myCalFlag5
myOper5
myInputOp6
myCalFlag6

myMjrAssem
myCompName
mySubassem
myRTIDName
myTlmType
myParmType
mySCCReqFlg
myTlmDesc

FdDbContxtDepRpt

myCntxtMnem
myDNEUInd
myLowVal
myHighVal

myTlmPID

FdDbCompleteTlmRpt FdDbPartialTlmRpt

myTlmMnem

FdDbParmLimitsRpt

FdDbDscStateRpt

1-4

1-4

1-32

F
ig

u
re

 3
.5

-2
.

P
D

B
 R

ep
o

rt
 O

b
je

ct
 M

o
d

el

3-41
305-C

D
-049-001

FdDbCmdParmRpt

myCmdMnem

myPrereqMnem

myLowVal
myHighVal

FdDbCmdVerifyRptFdDbPreStateRpt

myCevMnem

myLowVal
myHighVal
myTimeOut

myMjrAssem

mySubAssem
myCmdStDesc

myCmdType
myRTName
myRTSubAdd

myWordCnt
myWordType

mySafetyLvl

FdDbFixCmdRpt

myWrdNum
myDataValue

FdDbVarCmdRpt

mySubfldName
myDefltValue
mySubfldLen
mySrcFirstBit
myDestFirstBit
myDestLastBit

myMinVal
myMaxVal

FdDbTblDefRpt

myTblNum
myTblMnem
myTblType
myStartAdd
myMaxSize
myTblDesc

FdDbMemMaskRpt

myStrtAdd
myNumMskWrds

FdDbFldDefRpt

myFldNum
myFldDesc
myScaleFact
myValType
myDefltValue

myRgChkFlg
myLowVal
myHighVal
myValOvrFlg

FdDbCmdRpt

myCmdRptName
myCmdRptDate

FdDbVarStatesRpt

myStateText

myValBitSize
myDataUnits

myDNEUInd myDNEUInd

myCmdPID

myCompName

FdDbCompleteCmdRpt FdDbPartialCmdRpt

myCmdMnem

FdDbCmdConRpt

myConRule

FdDbCmdDescRpt

myCmdDest

myCmdLen

0-4 1-33 0-10

0-8

Figure 3.5-3. PDB Report Object Model

3-42
305-C

D
-049-001

FdDbActRpt

FdDbActDefRpt

myActRptName

myActName
myOwner
myResID
myStrtTrig
myOvrdFlag
myStrtTrigDelta
myMinDur
myDuration
myDurOvrdFlag
myEntryModes
myMode
myExitMode

FdDbActCmdRpt

FdDbActCmdParmRpt

myCmdMnem
mySSInd
myDeltaTime
myCmdType

myParmName
myLowLimit
myHighLimit
myValidVals
myDefaultVal
myModFlag

myActRptDate

FdDbCmdConRpt

myConRule

FdDbCompleteActRpt FdDbPartialActRpt

myActName

FdDbActConRpt

myConRule

1+

Figure 3.5-4. PDB Report Object Model

3-43
305-C

D
-049-001

FdDbConRpt

myConRptName
myConRptDate

FdDbCompleteConRpt FdDbPartialConRpt

myConTypeFdDbActMnemRpt FdDbCmdMnemRpt

FdDbActConRpt FdDbCmdConRpt

myActMnem myCmdMnem

myConRule myConRule

Figure 3.5-5. PDB Report Object Model

3-44 305-CD-049-001

3.5.4 PDB Report Dynamic Model

3.5.4.1 PDB Report Scenario Abstract

3.5.4.2 PDB Report Summary Information

Interfaces:

User Interface

Stimulus:

DBA selection of the PDB Report option from the Database Utilities Menu

Desired Response:

Edits to the unvalidated PDB

Pre-Conditions:

The database is up and running.

The database is initialized.

The PDB definitions are ingested.

The PDB is validated.

Post-Conditions:

None

3.5.4.3 PDB Report Scenario Description

The Project Data Base (PDB) Report Generation process is initiated through the selection of the
Project Data Base (PDB) Report Generation option on the Database Utilities Menu.

The user specifies which PDB data to report on based on User Interface prompts. Once the user
has made data type selections, the database reporting tool is invoked. (The report is generated us-
ing a database COTS product.)

Once the report is generated, the database reporting tool is exited and a status message is displayed
on the screen. The report may then be viewed or printed by selecting the appropriate options off
of the User Interface screen.

The PDB Report Generation screen is exited by selecting an exit button on the screen or by select-
ing another option off of the Database Utiltiies Menu.

3-45
305-C

D
-049-001

User
User

Interface

Database
Reports

Tool
Validated

PDBPrinter

select Generate Reports option

select PDB Reporting from
the Database Utilities Menu

select print option

select view option

display PDB Reporting screen

select Database Utilities
Menu from FUI

Database Utilities
Menu displayed

report displayed to screen

return report generation status

return print status

select exit PDB Reporting

exit PDBReporting screen

select exit
Database Utilities Menu

exit Database
Utilities Menu

select partial or complete
report option

enter name/mnemonic
info for a partial report

invoke Database Reports Tool

Figure 3.5-6. PDB Report Event Trace

3-46
305-C

D
-049-001

Wait for
DatabaseUtilities

Menu
selection

Wait for
report status
information

Wait for FUI
to initiate the
Database

Utilities Menu

Wait for
Report options

selection
Database Utilities
Menu displayed

PDB Reporting selected/
report options displayed

(print,view,generate)

Report Generation selected/
Report Tool invoked

report status displayed/
Report Tool exited

Report Print
selected

Report View
selected

other utility selected from menu/
PDB Reporting option exited

exit menu selected/
menu exited

Figure 3.5-7. PDB Report State Diagram

3-47 305-CD-049-001

3.5.5 PDB Report Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

Class Name: FdDbActConRpt

Description: The Activity Constraint Report provides the activity constraints on an
Activity Report.

Class Name: FdDbActCmdRpt

Description: The Activity Definition Report class provides the activity command definition por-
tion of the Activity report..

Class Name: FdDbActMnemRpt

Description: The Activity Mnemonic Report class represents the list of Activity
Mnemonics on the Constraint Report.

Class Name: FdDbActRpt

Description: The Activity Report class represents the Activity Report.

Attributes:

myActRptName: string

Description: the name given to the report

myActRptDate: string

Description: the date the report was generated

Class Name: FdDbCmdConRpt

Description: The Command Constraint provides the command constraints on an
Activity Report

Class Name: FdDbActCmdParmRpt

Description: The Activity Command Parameter Report provides activity Command
Parameter portion of the Activity Report.

3-48 305-CD-049-001

Class Name: FdDbActDefRpt

Description: The Activity Definition Report class provides the activity definition data
of an Activity Report.

Class Name: FdDbCmdMnemRpt

Description: The Command Mnemonic Report class represents the list of Command
Mnemonics on the Constraint Report.

Class Name: FdDbCmdRpt

Description: The Command Report class represents the Command Report.

Attributes:

myCmdRptName: string

Description: the name given to the report

myCmdRptDate: string

Description: the date the report was generated

Class Name: FdDbCompleteActRpt

Description: The Complete Activity Report class represents a complete ActivityReport, listing
all information about all activities.

Class Name: FdDbCompleteCmdRpt

Description: The Complete Command Report class represents a complete Command Report,
listing all information about all commands.

Class Name: FdDbCompleteConRpt

Description: The Complete Constraint Report class represents a complete ConstraintReport,
listing all information about all constraints.

Class Name: FdDbCompleteTlmRpt

Description: The Complete Telemetry Report class represents a complete TelemetryReport,
listing all information about all telemetry mnemonics.

3-49 305-CD-049-001

Class Name: FdDbConRpt

Description: The Constraint Report class represents the Constraint Report.

Attributes:

myActRptName: string

Description: the name given to the report

myActRptDate: string

Description: the date the report was generated

Class Name: FdDbPartialActRpt

Description: The Partial Activity Report class represents a partial Activity Report, correspond-
ing to the activity name specified.

Class Name: FdDbPartialCmdRpt

Description: The Partial Command Report class represents a partial Command Report, corre-
sponding to the command mnemonic specified.

Class Name: FdDbPartialConRpt

Description: The Partial Constraint Report class represents a partial Constraint Report, corre-
sponding to the constraint type specified.

Attributes:

myConType: string

Description: the type of constraint report, command or activity

Class Name: FdDbPartialTlmRpt

Description: The Partial Telemetry Report class represents a partial Telemetry Report, corre-
sponding to the telemetry mnemonic specified.

3-50 305-CD-049-001

Class Name: FdDbTlmRpt

Description: The Telemetry Report class represents the Telemetry Report.

Attributes:

myTlmRptName: string

Description: the name given to the report

myTlmRptDate: string

Description: the date the report was generated

Class Name: FdDbAnalogTlmRpt

Description: The Analog Telemetry Report class represents the analog telemetry
information associated with a telemetry parameter on a Telemetry
Report.

Class Name: FdDdCmdDescRpt

Description: The Command Description Report class represents the command
description information associated with a command parameter
for a Command Report.

Class Name: FDbCmdParmRpt

Description: The Command Parameter Report class represents the command parameter
information on the Command Reprot.

Class Name: FdDbCmdVerifyRpt

Description: The Command Execution Verification (CEV) Report class represents
the CEV information for a command parameter on a Command Report.

Class Name: FdDbDeltaLimitRpt

Description: The Delta Limit Report class represents the delta limit assoicated with
a telemetry parameter limit on a Telemetry report.

Class Name: FdDbParmLimitsRpt

Description: The Parameter Limits Report class represents the limits assoicated
with a telemetry parameter on a Telemetry report.

3-51 305-CD-049-001

Class Name: FdDbDscStateRpt

Description: The Discrete States Report class represents the discrete state
information for a telemetry parameter on a Telemetry Report.

Class Name: FdDbFixCmdRpt

Description: The Fixed Data Word Report class represents fixed command information
associated with a command parameter on a Command Report.

Class Name: FDbFldDefRpt

Description: The Table Field Definition Record represent the field defintion data for
the table definition data on the Command Report.

Class Name: FdDbLimitSetRpt

Description: The Limit Set Report class represents the limits set information
associated with a telemetry parameter limit on a Telemetry Report.

Class Name: FdDbMemMaskRpt

Description: The Memory Masking Definition Report represents the memory mask
information on the Command Report.

Class Name: FdDbPreStateRpt

Description: The Prerequisite State Report class represents the prerequisite state
information for a command parameter on a Command Report.

Class Name: FdDbReportPDB

Description: The Report PDB class represents the PDB Report.

Attributes:

myRptType: string

Description:report type indicated the type of report
(telemetry, command, activity, or constraint)

3-52 305-CD-049-001

Operations:

FdDbReportPDB :: PrintRpt

Description:the operation to print a generated report

FdDbReportPDB :: ViewRpt

Description:the operation to view a generated report

FdDbReportPDB :: GenerateRpt

Description:the operation to generate a report

Class Name: FdDbTblDefRpt

Description: The Table Definition Record represents the table definition
information on the Command Report.

Class Name: FdDbTlmDescRpt

Description: The Telemetry Description Report class represents the telemetry
description information assoicated with a telemetry parameter
on a Telemetry Report.

Class Name: FdDbTlmPacketRpt

Description: The Telemetry Packet Report represents the telemetry packet information
on a Telemetry Report.

Class Name: FdDbTlmParmRpt

Description: The Telemetry Parameter Report class represents the telemetry
parameter information on a Telemetry Report.

Class Name: FDbVarCmdRpt

Description: The CommandVariable Command Report class represents the variable
command information associated with a command paramater on a
Command Report.

Class Name: FdDbVarStatesRpt

Description: The Variable States Report class represents the variable states for
a variable command assoicated with a command parameter for a
Command Report.

3-53 305-CD-049-001

3.6 Operational Data Generation

3.6.1 Operational Data Generation Context

Refer to Section 3.2.1

3.6.2 Operational Data Generation Interfaces

Refer to Section 3.2.2

3.6.3 Operational Data Generation Object Model

FdDbOperationalData represents the data generated and maintained by the DMS. This information
is used to support FOS operations. It is made up of telemetry, command, constraint and activity
data (FdDbTelemetryOpData, FdDbCommandOpData, FdDbConstraintOpData, FdDbActivity-
OpData). Operational data may be maintained as database tables or in UNIX files.

Each of the operational data generation subclasses (FdDbTlmOpDataGen, FdDbCmdOpDataGen,
FdDbConOpDataGen, FdDbActOpDataGen) is derived from the FdDbGenOpData base class.
They are responsible for controlling the conversion of each type of PDB data into an operational
format. Upon acceptance of the validated PDB, the DBA will invoke this process to produce a new
version of the operational data.

The class FdDbTelemeteryOpData represents the information that is used to support telemetry pro-
cessing during FOS operations. The FdDbFUITlmODF controls the generation of operational data
files used by the FOS User Interface Subsystem. The class FdDbTlmSubsysODF provides a listing
of telemetry subsystem names and is made up of the subclass FdDbTlmSubsysDef. The class Fd-
DbTlmMnemODF provides a listing of valid telemetry mnemonics associated with the current ver-
sion of operational telemetry data. It is made up of the subclass FdDbTlmMnemDef.
FdDbSCTlmODF controls the generation of the operational data files used to support telemetry
processing. The class FdDbTlmParmODF is made up of the subclasses that represent the telemetry
parameter definitions (FdDbTlmPktDef, FdDbTlmParmDef, FdDbAnaTlmDef, FdDbDiscTlm-
Def, FdDbConversion, FdDbTlmLimits, FdDbDeltas, FdDbBndryGrp, FdDbStates).

The class FdDbCommandOpData represents the information that is used to support spacecraft
commanding during FOS operations. FdDbCEVODF controls the generation of the operational
command execution verification file for the Command Management Subsystem. It is made up of
the subclass FdDbCEVDEF. An instance of this subclass contains the execution verification cri-
teria for a command mnemonic. FdDbCmdODF controls the generation of the operational com-
mand parameter file used to support Real-time commanding. It is made up of the subclasses
FdDbCommandParm, FdDbPreState, FdDbFixData, FdDbVarData, FdDbVarConv, FdDb-
VarStates. The class FdDbOpCmdDB controls the creation of the operational database tables for
commanding. The Planning & Scheduling Subsystem and Command Management Subsystem in-
terface directly with the FOS Database during operations and must have access to this information.
The subclass FdDbCommandODT represents the command operational data tables which is made
up of the class FdDbCommandPDB.

The class FdDbOpActDB controls the creations of the operational database tables for activity def-
initions. The Planning & Scheduling Subsystem and the Command Management Subsystem inter-
face directly with the FOS Database during operations and must have access to this information.

3-54 305-CD-049-001

The subclass FdDbActivityODT represents the activity operational data tables which is made up
of the class FdDbActPDB.

The class FdDbOpConDB controls the creation of the operational database tables for constraint
definitions. The Planning & Scheduling Subsystem and the Command Management Subsystem
interface directly with the FOS Database during operations and must have access to this informa-
tion. The subclass FdDbConstraintODT represents the constraint operational data tables which is
made u p of the class FdDbConstraintPDB.

3.6.4. Operational Data Generation Dynamic Model

3.6.4.1 Operational Data Generation Scenario Abstract

The Operational Data Generation scenario describes the generation of operational data tables and
files used to support FOS operations.

3.6.4.2 Operational Data Generation Summary Information

Interfaces:

None

Stimulus:

DBA selection of the operational data generation option from the Database Utilities menu

Desired Response:

The creation of the operational data tables and files from telemetry, command, constraint
and activity PDB.

Pre-Conditions:

FOS Database initialized.

PDB validated.

Post-Conditions:

None

3-55
305-C

D
-049-001

FdDbProjectDatabase

mySCID
myCreateDate
myPDBType

FdDbOperationalData

mySCID
myOpDataType
myOpDataVersion

FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB

myTlmName
myTlmSource

myCmdName
myCmdSource

myActName
myActSource

myConName
myConSource

myValidFlag

FdDbUnvalProjectDatabase FdDbValProjectDatabase

FdDbCommandOpData FdDbActivityOpDataFdDbTelemetryOpData FdDbConstraintOpData

FdDbGenOpData

[Continued]

FoDbOpDataFile FoDbOpDataTable

[Continued]

[Continued]

FdDbFuiInterface

provides
valid telemetry

mnemonics

provides valid
command mnemonics

provides
valid

command
mnemonics

provides
valid

activity
names

producesconverted by

invokes

Figure 3.6-1. Operational Data Generation Object Model

3-56
305-C

D
-049-001

FdDbGenOpData

FdDbTlmOpDataGen FdDbCmdOpDataGen FdDbConOpDataGen FdDbActOpDataGen

GenSCTlmODF GenCmdODF
GenCEVODF
CreOpCmdDB

CreOpConDB CreOpActDB

GenTlmMnemODF

GenOpData

Figure 3.6-2. Operational Data Generation Object Model

3-57 305-CD-049-001

myStateText

FdDbTelemetryOpData

FdDbSCTlmODF

FdDbTlmPktDef

myPktApid
myPktLen

FdDbTlmParmDef

myTlmPID
myTlmMnem

myCycleID
myTlmInst
myPktOffset
myParmSize
myDeltaTime
myDataRep

myTlmSubsys

FdDbAnaTlmDef FdDbDiscTlmDef

myInputFmt
myDataUnits

FdDbConversion

myConvType

myCOne
myCTwo

myCZero

myCThree
myCFour
myCFive
myCSix
myCSeven

FdDbBndryGrp

myDNEUInd
myRedLow
myYellowLow
myYellowHigh

myRedHigh

FdDbDrvTlmDef

myLimitSet

mySwitMnem

myMinValue
myMaxValue

myConvSet

mySwitMnem
myMinValue
myMaxValue

FdDbFUITlmODF

FdDbTlmSubsysDef

FdDbDStates

FdDbDeltas

FdDbTlmLimits

myDNEUInd
myDeltaValue

myMinValue
myMaxValue

FdDbTlmMnemDef

myTlmMnem

FdDbTlmParmODF FdDbDrvTlmODF

FdDbTlmSubsysODF FdDbTlmMnemODF

myTlmSubsysmySCID
myTlmSubsys

mySwitMnem

myDrvMnem
myDrvUnits
myCompRate
myInputOp1
myCalFlag1
myOper1
myInputOp2

myInputOp3

myInputOp4

myInputOp5

myInputOp6
myCalFlag6

myCalFlag5

myCalFlag4

myCalFlag3

myCalFlag2

myOper5

myOper4

myOper3

myOper2

Figure3.6-3. Operational Data Generation Object Model

3-58
305-C

D
-049-001

FdDbCommandOpData

FdDbCmdODFFdDbCEVODF

FdDbCommandParm

FdDbPreState FdDbFixData FdDbVarData

myCmdSubsys
myCmdType
myCriticalFlg
myCEVPID

myCEVRange
myCEVTimeOut
myCmdDest
myCmdDesc
myCmdLen
myNumPreState
myNumFixData
myNumVarData

myPrereqPID
myPrereqType
myPrereqRange

myDataValue mySubmnem

myDefltVal

myDestFirstBit
myDestLastBit
myValueType

myCmdMnem

SetCommandParm
GetCommandParm

myCEVType

FdDbVarStates

myValueRange
myStateText

FdDbOpCmdDB

FdDbCommandPDB

myCmdName
myCmdSource

FdDbCEVDef

myCmdMnem
myCEVPID
myCEVType
myCEVRange

FdDbCommandODT

myCmdName

myCmdVersion

Command Operational Data

myCEVTimeOut

FdDbVarConv

myCalCurve

Figure 3.6-4. Operational Data Generation Object Model

3-59 305-CD-049-001

FdDbConstraintOpData

FdDbOpConDB

FdDbConstraintPDB

myConName

myConName
myConSource

[Continued]

FdDbConstraintODT

Figure 3.6-5. Operational Data Generation Object Model

3-60
305-C

D
-049-001

FdDbActivityOpData

FdDbOpActDB

FdDbActivityPDB

myActName
myActSource

myActName

[Continue]

FdDbActivityODT

myActName

Figure 3.6-6. Operational Data Generation Object Model

3-61 305-CD-049-001

3.6.4.3 Operational Data Generation Scenario Description

The Operational Data Generation process is initiated through the selection of the operational data
generation option on the Database Utilities menu by the DBA.

The generation of the telemetry operational data is invoked first. Telemetry definitions are copied
from the validated PDB within the database and put into a format useful for telemetry processing.
This information is stored in UNIX files, which include the Telemetry Subsystem ODF, the Te-
lemetry Mnemonic ODF, the Telemetry Parameter ODF and the Derived Telemetry ODF.

Next, the creation of the operational command data is invoked. The definitions from the validated
command PDB are copied into the command operational data tables. Additionally, the Command
Execution Verification ODF and the Command Parameter ODF are created by copying the com-
mand definitions from the database tables into a UNIX file.

The constraint and activity operational data generation includes copying the validated constraint
and activity PDB into an operational area for access by Planning & Scheduling the Command Man-
agement Subsystems.

Upon completion of the generation process a new version of the operational data is made available
by the Data Management Subsystem for use by the FOS Subsystems.

3-62
305-C

D
-049-001

DBA User
Interface

FdDbGenOpData FdDbTelemetryOpData FdCommandOpData FdDbConstraintOpData FdDbActivityOpData

select DB Utilities
Menu from User

Interface

select Operational
Data Generation

Option

display
generation status

return generation status

invoke generation of operational activity data

display
generation status

display
generation status

return generation status

return generation status

display DB
Utilities Menu

invoke Operational
Data Generation

display
generation

options

return generation status

invoke generation of operational
constraint data

invoke generation of operational
command data

display
generation status

invoke generation
of operational
telemetry data

select
complete

option

Figure 3.6-7. Operational Data Generation Event Trace

3-63
305-C

D
-049-001

FdDbTelemetryOpData FdDbFUITlmODF FdDbTlmSubsysODF FdDbTlmMnemODF FdDbSCTlmODF FdDbTlmParmODF FdDbDrvTlmODF

invoke generation
of operational

telemetry data for FUI

invoke generation
of telemetry

subsystem ODF

return generation status

invoke generation of
telemetry mnemonic ODF

return generation status

invoke generation of derived
telemetry ODF

return generation status

return generation status

invoke generation of operational telemetry data for telemetry processing

invoke generation of
spacecraft telemetry

parameter ODF

Figure 3.6-8. Operational Data Generation Event Trace

3-64 305-CD-049-001

FdDbCommandOpData FdDbCEVODF FdDbCmdODF FdDbOpCmdDB

invoke generation of CEV ODF

return generation status

invoke generation of command ODF

return generation status

invoke generation of operational command database

return generation status

Figure 3.6-9. Operational Data Generation Event Trace

3-65
305-C

D
-049-001

FdDbActivityOpData FdDbOpActDB FdDbConstraintOpData FdDbOpConDB

invoke genertion of the
operational activity database

return generation status

invoke generation of the
operational constraint database

return generation status

Figure 3.6-10. Operational Data Generation Event Trace

3-66
305-C

D
-049-001

Wait for FUI
to initialize the

Database Utilities
Menu

Wait for
generation
completion

status

Wait for
generation option

selection

Wait for
Database Utilities

Menu option
selection

Database Utilities Menu initialized/
Options displayed

Operational Data Generation option
selected/Generation options

displayed

Generation option selected/
invoke process

Generation
completion

status
displayedExit button selected

Figure 3.6-11. Operational Data Generation State Diagram

3-67 305-CD-049-001

3.6.5 Operational Data Generation Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

Class Name: FdDbActOpDataGen

The Activity Operational Data Generation class provides the functional operations needed to gen-
erate the operational constraint data.

Operations:

FdDbActOpDataGen:: CreOpActDb

operation to create the operational activity database.

Class Name: FdDbActivityODT

The Activity ODT class represents operational activity database tables used in support of FOS op-
erations for mission planning and spacecraft commanding.

Class Name: FdDbActivityOpData

The Activity Operational Data class contains activity information used during FOS operations to
support the Planning & Scheduling and Command Management Subsystems..

Class Name: FdDbActivityPDB

The Activity PDB class represents the activity definition files needed to support FOS operations.

Class Name: FdDbAnaTlmDef

The Analog Telemetry Definition class provides characteristic information about analog telemetry
parameters.

Class Name: FdDbBndryGrp

The Boundary Group class contains the red/yellow - high/low limit checking criteria associated
with an analog or discrete telemetry parameter.

Class Name: FdDbCEVDef

The CEV Definition class provides the criteria used to verify execution of a command during FOS
operations.

Class Name: FdDbCEVODF

The CEV ODF class contains command executions verification definitions in support of the Com-
mand Management Subsystem during FOS operations.

3-68 305-CD-049-001

Class Name: FdDbCmdODF

The Command ODF class contains the command definitions used to support spacecraft command-
ing during FOS operations.

Class Name: FdDbCmdOpDataGen

The Command Operational Data Generation class provides operations used to generate the opera-
tional command data.

Operations:

FdDbCmdOpDataGen::GenCmdODF

Description:operation to generate the command operational data file used in sup-
port of real-time Commanding.

FdDbCmdOpDataGen::GenCEVODF

Description:operation to generate the command execution verification list for the
Command Management Subsystem.

FdDbCmdOpDataGen::CreOpCmdDB

Descriptionoperation to create the operational command database.

Class Name: FdDbCommandODT

The Command ODT class represents operational command database tables used in support of FOS
operations for the Planning & Scheduling and Command Management Subsystems.

Class Name: FdDbCommandOpData

The Command Operational Data class contains command definitions in an operational format used
support FOS operations.

Class Name: FDbCommandParm

The Command Parameter class contains an instance of a spacecraft or instrument command which
is used to support real-time commanding of the EOS AM-1 spacecraft.

Class Name: FdDbCommandPDB

The Command PDB class represents the command definition files needed to support commanding
of the EOS AM-1 spacecraft.

Class Name: FdDbConOpDataGen

The Constraint Operational Data Generation class provides the functional operations needed to
generate the operational constraint data.

3-69 305-CD-049-001

Operations:

FdDbConOpDataGen:: CreOpConDb

Description:operation to create the operational constraint database.

Class Name: FdDbConstraintODT

The Constraint ODT class represents operational constraint database tables used in support of FOS
operations.

Class Name: FdDbConstraintOpData

The Constraint Operational Data class contains operational constraint data used in support of FOS
operations.

Class Name: FdDbConstraintPDB

The Constraint PDB represent the constraint definition files needed to support constraint checking
for commands and activities during FOS operations.

Class Name: FdDbConversion

The Conversion class provides the coefficients used to convert raw telemetry values into EUs.

Class Name: FdDbDeltas

The Deltas class provides the delta limit definition for a telemetry parameter

Class Name: FdDbDiscTlmDef

The Discrete Telemetry Definition class provides characteristic information about discrete telem-
etry parameters.

Class Name: FdDbDrvTlmDef

The Derived Telemetry Definition class contains a simple equations that combine previously de-
fined analogs, discretes, constants and other derived parameters via arithmetic or logical functions.

Class Name: FdDbDrvTlmODF

The Derived Telemetry ODF class contains the derived telemetry parameter definitions.

Class Name: FdDbDState

The Discrete States class contains the association of a single text state to a range of values for a
discrete telemetry parameter.

3-70 305-CD-049-001

Class Name: FDbFixData

The Fixed Data Word class represents a fixed data word associated with a command.

Class Name: FdDbFUITlmODF

The FUI Telemetry ODF class represents the telemetry data files generated to support FOS User
Interface.

Class Name: FdDbGenOpData

The Generate Operational Data class provides an operation responsible for invoking the process
for generating operational data.

Operations:

FdDbGenOpData::GenOpData

Description:operation to generate operational data for mission planning, space
craft commanding and telemetry processing.

Class Name: FdDbOpActDB

The Operational Activity Database class represents the operational activity information maintained
in table format in a COTS DBMS.

Class Name: FdDbOpCmdDB

The Operational Command Database class represents the operational command information main-
tained in table format in a COTS DBMS.

Class Name: FdDbOpConDB

The Operational Constraint Database class represents the operational constraint information main-
tained in table format in a COTS DBMS.

Class Name: FdDbOpDataFile

The Operational Data File class represents the operational information maintained by the DMS in
a UNIX file format.

Class Name: FdDbOpDataGen

The Operational Data Generation class represents the operational information maintained by the
DMS in a UNIX file format.

3-71 305-CD-049-001

Class Name: FdDbOpDataTable

The Operational Data Table class represents the operational information maintained by the DMS
in a COTS database product in table format.

Class Name: FdDbOperationalData

The Operational Data class represents the database tables and UNIX files that are used to support
mission planning, spacecraft commanding and telemetry processing for the FOS.

Class Name: FdDbProjectDatabase

The Project Database class represents the telemetry, command, constraint and activity definitions
files needed to support FOS operations.

Class Name: FdDbPreState

The Prerequisite State Specification Record defines the condition for which a telemetry parameter
associated with a command must occur in order to perform prerequisite state checking.

Class Name: FdDbSCTlmODF

The Spacecraft Telemetry ODF class provides the validated telemetry PDB in an operational for-
mat to be used to support telemetry processing.

Class Name: FdDbTelemetryOpData

The Telemetry Operational Data class contains operational telemetry data used in support of FOS
operations.

Class Name: FdDbTelemetryPDB

The Telemetry PDB class represents the telemetry definition files needed to support telemetry pro-
cessing during FOS operations.

Class Name: FdDbTllmLimits

The Telemetry Limits class represents the telemetry limits definitions.

Class Name: FdDbTlmMnemDef

The Telemetry Mnemonic Definition class provides the current telemetry mnemonics used during
operations.

3-72 305-CD-049-001

Class Name: FdDbTlmMnemODF

The Telemetry Mnemonic ODF class contains the telemetry mnemonics supporting telemetry op-
erations and is used by the FOS User Interface Subsystem.

Class Name: FdDbTlmOpDataGen

The Telemetry Operational Data Generation class provides operations used to generate the opera-
tional telemetry data.

Operations:

FdDbTlmOpDataGen::GenSCTlmODF

Description:operation to generate the spacecraft telemetry files for telemetrypro-
cessing.

FdDbTlmOpDataGen::GenTlmMnemODF

Description:operation to generate the telemetry subsystem and mnemonic files to
support FOS User Interface.

Class Name: FdDbTlmPktDef

The Telemetry Packet Definition class provides telemetry packet definitions in support of teleme-
try operations.

Class Name: FdDbTlmParmDef

The Telemetry Parameter Definition class provides the operational telemetry parameter definition
used to support telemetry decommutation.

Class Name: FdDbTlmParmODF

The Telemetry Parameter ODF class provides the operational telemetry data used to support telem-
etry decommutation.

Class Name: FdDbTlmSubsysODF

The Telemetry Subsystem ODF class contains telemetry subsystem information for use by the FOS
User Interface Subsystem.

Class Name: FdDbTlmSubsysDef

The Telemetry Subsystem Definition class provides the name of each telemetry subsystem sup-
ported by the spacecraft.

3-73 305-CD-049-001

Class Name: FdDbUnvalProjectDatabase

The Unvalidated Project Database class represents the PDB in a state prior to having validation
performed on it's contents.

Class Name: FdDbValProjectDatabase

The Validated Project Database class represents the PDB in a state after having validation per-
formed on it's contents.

Class Name: FDbVarConv

The Command Variable Conversion class contains the conversion equation associated with vari-
able type command.

Class Name: FDbVarData

The Command Variable Data class contains the subfields associated with variable type commands.

Class Name: FdDbVarStates

The Variable States class provides the states associated with a subfield.

3.7 DMS Event Processing
The event handler receives all network, system, and operational events. The event handler is re-
sponsible for sending unformatted events to the event archiver at the data server. The event ar-
chiver is responsible for formatting events using the unformatted event and the events database.
The formatted event will contain UTC time of event, event type, event identifier, event message,
instrument identifier, spacecraft identifier, event message, severity, filename where event oc-
curred, and line number of the file. The event archiver will archive the event, multicast the event
so that the event can be viewed by user stations, and initiate procedures (triggers).

The user has the option of configuring incoming and outgoing event filters. Both the event listener
and the event handler will read an event filter configuration file during initialization. Outgoing
event filters prevents the event handler from sending duplicated events over the network (i.e., tlm
limits), and incoming event filters directs the event listener to only listen for selected event types.

3.7.1 DMS Event Processing Context

The DMS event processing interfaces with all FOS subsystems and with the MSS, as shown in the
Context Diagram and summarized below.

FOS Applications:

Sends unformatted events to the DMS. The events are formatted and archived by the DMS at
the data server.

MSS:

Sends unformatted events to the DMS. The events are formatted and archived by the DMS at
the data server.

3-74 305-CD-049-001

Receives MSS related events from the DMS. The DMS uses an events database to determine
which events are to be sent to the MSS.

FOS User Interface:

Receives formatted events from the DMS. The user can select the type of events to view.

3.7.2 DMS Event Processing Interfaces

3.7.3 DMS Event Processing Object Model

The FdEventLogger class provides application software a way to send events to the event handler.
The user calls the GenEvent operation passing the appropriate parameters whenever an event needs
archived and sent to display. The FdEvEventLogger class will create a FoEvEvent class from the
calling parameters and send the FoEvEvent class to the FdEvEventHandler class.

The FdEvEventHandler class routes events to the FdEvEventArchiver. The FdEvEventHandler
class uses the FdEvEventConfig class to determine which events need to be sent to the FdEvEven-
tArchiver class.

The FdEvEventConfig class contains incoming and outgoing event filters. The user can select the
type of events that need to be sent to the event archiver, and the type of events the user station needs
to listen for.

The FdEvEventArchiver class receives unformatted events from event handlers. The FdEvEven-
tArchiver uses the FdEvEventDb event database class to determine how to format the events. The
formatted events are archived using the FdEvEventFile class, and multicasted over the network to
user stations. The FdEventArchiver class also uses the event database to determine if a procedure
needs initiated. If a procedure needs initiated the FdEvEventArchiver class will instantiate a
FdEvProcedure class.

The FdEvEventListener class listens for formatted events on the network. The FoEvEventListener
filters events by using information provided in the FdEvEventConfig class, and then sends the
events to display.

Table 3.7-1. DMS Event Processing Interfaces

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Event
Processing

FdEvEventLogger Sends events to event
handler

DMS All FOS,
MSS

Very
frequent

3-75
305-C

D
-049-001

DMS
Event

Processing

Command
Management

Planning
and

Scheduling

User
Interface

Resouce
Management

Telemetry

Analysis

Command

Command
Management

MSS

This System

Events

Events Events

Events

Events

Events

MSS
Events

Formatted
Events

Events

Events

FOS
Events

Figure 3.7-1. DMS Event Processing Context

3-76
305-C

D
-049-001

FdEvEventConfig

myIncomingTypes
myOutgoingTypes

Read()

FoEvEvent

myEventID

FdEvEventHandler

FoEvFormattedEvent:

myEventId

FdEvEventDB

myEventID
myEventType
myBackground
myProcedure

ReadEvent()

FdEvEventArchiver

FdDbMetadata

myFileName
myPath

SendEvent(FoEvEvent)

FdEvEventFile

FoEvEventListener

ReadEvent()

myFileName

myType
myStorageLoc

mySpacecraftId
mySubsystem

mySpacecraft:String
mySubsystem

Open()

FormatMessage(Background,ParamList)

MulticastEvent(FoEvFormattedEvent)

DisplayEvent()

SetTime()

CsIfMessageHandler

myHandle

Read(FoEvFormattedEvent)
Write(FoEvFormattedEvent)
Close()

Open()
Close()

DisplayConnect()
DisplayDisconnect()

myNode
myParamList
myLineNumber
myFile

Init()
Init()

BuildEvent()

Init()

myType
myNode
myMessage
mySeverity
myLine
myFile

mySeverity
mySubsystemFlag

FdEvProcedure

myProcName:String

StartProc()

myTime

Open()
Close()

ReadIndex(Time, FoEvFormattedEvent)

FdEvEventLogger

GenEvent(myEventID, mySpacecraftId,
mySubsystem, myParamList,
myLineNumber, myFile)

ReadEvent(FoEvEvent)

myCreateDate
myUR
mySize

 - : Container
 - : Container

 - : EcTInt

 - : EcTInt
 - : Container*
 - : RWCString
 - : RWCString

 + : EcTInt

 - : RWCString
 - : RWCString

 + : EcTInt

 + : EcTInt

 - : RWCString

 - : EcTInt
 - : EcTInt

 - : RWCString
 - : Container*

 - : RWCString
 - : Container*

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt
 + : EcTInt

 + : EcTInt
 + : EcTInt

 + : EcTInt
 + : EcTInt

 - : RWCString
 - : Container*
 - : EcTInt
 - : RWCString

 + : EcTVoid
 + : EcTVoid

 + : EcTInt

 + : EcTInt

 - : Container*
 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString

 - : EcTInt
 - : EcTInt

 - : RWCString

 + : EcTInt

 - : EcTTime

 + : EcTInt

 + : EcTBoolean

 + : EcTInt

 - : RWTime
 - : EcTInt
 - : EcTInt

sent to
1+

reads/
sends

sends
1+

updated
by

formats/
archives/
multicasts

reads

read
by

read/write
events

Sends
I/F

objects

contained
in

reads

sends

starts

Figure 3.7-2. DMS Event Processing Object Model

3-77 305-CD-049-001

3.7.4 DMS Event Processing Dynamic Model

3.7.4.1 DMS Event Processing Scenario Abstract

The purpose of the Event Processing scenario is to describe the process by which events are gen-
erated, archived and sent to displays. The event trace for this scenario can be found in Figure-3.7-
3.

3.7.4.2 DMS Event Processing Summary Information

Interfaces:

User Interface

Analysis

Telemetry

Command

Resource Management

Real-time Contact Manager

Planning and Scheduling

Command Management

Stimulus:

FdEventLogger genevent operation is called by application software.

Desired Response:

Formatted event is created, archived, and multicasted.

Pre-Conditions:

Event applications initialized.

Post-Conditions:

Event is stored at data server, and displayed at user station.

3.7.4.3 DMS Event Processing Scenario Description

The FdEvEventLogger provides applications with a way to send events to the FdEvEvent Handler.
The FdEvEventLogger is responsible for creating a FoEvEvent and sending it to the FdE-
vEventHandler.

The FdEvEventHandler class sends the FoEvEvent class to the FdEvEventArchiver class. The
FdEvEventArchiver class creates an FoEvFormattedEvent by using the FdEvEventDB event data-
base class, and information provided in the FoEvEvent class. The FdEvEventArchiver class will
use the event id to index into the FdEvEventDB. The FdEvEventArchiver starts the FdEvProce-
dure class if the FdEvEventDb classs defines a procedure to initiate. The FdEvEventArchiver ar-
chives FoEvFormattedEvent classes to the FdEvEventFile, and then multicasts
FoEvFormattedEvent classes over the network.

The FoEvEventListener class reads FoEvFormattedEvent classes off the network. The FoEv-
EventLister class uses the FdEvEventConfig class to filter events. The FoEvEventListener sends
FoEvFormattedEvent classes to the event displays.

3-78
305-C

D
-049-001

Applications

FoEvEvent
Logger

FdEvEvent
Handler

FdEvEvent
Archiver

FoEvEvent
Listener

FoEvFormatted
Event FdEvEventFileFdEvEventDb

FoEvEvent
Config

FUI Event
Display

FdEv
Procedure

generates
event

sends formatted event

mutlicasts formatted
event

stores formatted
event

creates

sends FoEvEvent

sends
FoEvEvent

reads

reads

reads

invokes

Figure 3.7-3. DMS Event Procesing Event Trace

3-79 305-CD-049-001

3.7.3.5 DMS Event Processing Data Dictionary

Class Name: FdEvEventConfig

Description: Configuration file used by the Event Handler and the Event Listener

to filter events.

Features:

Attributes:

myIncomingTypes

Description:The types of events the Event Listeners listens for

myOutgoingTypes

Description:The types of events the Event Handler sends to the Event
Archiver myTriggerFlag

Description:Turns triggers on/off.

myNodeType

Description:Type of machine (EOC workstation, IST, Data

Server, RT Server)

Operations:

FdEventConfig:ReadConfig

Description:Reads in all configuation information

Class Name: FdEvEventDb

Description: Event Database is used to format events, and give information

about what to do with events

Features:

Attributes:

myEventID: EcTInt

Description:event number used to index into the event database

myEventType:Container*

Description:type of event

(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)

myBackground:String

Description:background text that is combined with myParamList

of FoEvEvent to create a formatted event.

(Printer %s Failed) Printer Failed is background

myProcedure:String

Description:Procedure name that needs to be triggered.

myTriggerLoc:EcTInt

3-80 305-CD-049-001

Description:Where a trigger can be initiated

(Workstation, IST, DataServer, RTServer)

mySeverity:EcTInt

Description:Events are warnings or alarms.

mySubsystemFlag:EcTInt

Description:Flag indicating if event should goto subsystem.

Operations:

FdEvEventDb::Open

Description:opens event database

FdEvEventDb::Close

Description:closes event database

FdEvEventDb::ReadEvent

Description:reads record from event database

Class Name: FdEvEventFile

Description: Archived event file.

Features:

Attributes:

myFileName::String

Description:Hourly event filename. Naming convention is

YYYYDDDHH.evt

myHandle::EcTInt

Description:handle of open event file

Operations:

FdEvEventFile:Open

Description:opens event file

FdEvEventFile:Close

Description:closes event file

FdEvEventFile::Read

Description:reads formatted event record from event file

FdEvEventFile::Write

Description:writes formatted event record from event file

Class Name: FdEvLogger

Description: Generated anytime an event needs to be displayed and archived.

Reference FoEvEvent for description of attributes.

3-81 305-CD-049-001

Features:

Attributes:

Operations:

FdEvEventLogger:GenEvent(myEventID, mySpacecraftID, mySubsystem,

myParamList, myLine, myFile)

Class Name:FdEvProcedure

Description:This class starts up procedures

Features:

Attributes:

myProcName

Description:Name of Procedure to initiate.

Operations:

FdEvProcedure::StartProc

Description:Starts Procedure name myProcName.

Class Name:FoEvEvent

Description:Generated anytime an event needs to be displayed and archived.

Features:

Attributes:

myEventID: EcTInt

Description:event number used to index into the event database

mySpacecraftID:String

Descripton:identifies spacecraft

(AM1)

mySubsystem:Container*

Description:identifies subsystems

(CERES, MOPITT, MISR, ASTER, MODIS)

myNode:String

Description:identifies node name

(EOC Workstation, IST, Data Server, RT Server)

myParamList:Container*

Description:Parameters that fill in the event message.

(Ex. Printer %s Failed) %s is the Param List

myLineNumber:EcTInt

Description:Line number of event

3-82 305-CD-049-001

Use Macro __LINE__ for this argument

myFile:String

Description:File name of event

Use Macro __FILE__ for this argument

Operations:

Class Name: FoEvEventArchiver

Description: Event Archiver archives and multicastes formatted events.

Features:

Attributes:

Operations:

FdEvEventArchiver::Init

Description:initiliazes Event Archiver attributes

FdEvEventArchiver::Run

Description:main loop of Event Archiver

FdEvEventArchiver::MulticastEvent

Description:multicasts formatted event

Class Name: FoEvEventHandler

Description: Event Handler receives all events generated on the local workstation or serv-
er. The Event Handler uses a configuration file to determine if anevent is sent to the Event Ar-
chiver.

Features:

Attributes:

Operations:

FdEvEventHandler::Init

Description:initiliazes Event Handler attributes.

FdEvEventHandler::Run

Description:main loop of Event Handler

FdEvEventHandler::SendEvent

Description:sends unformatted event to the Event Archiver

Class Name: FoEvEventListener

Description: Listens for events on the network, the sends events to FUI Event

Analyzer.

3-83 305-CD-049-001

Features:

Attributes:

Operations:

FoEvEventListener::ReadEvent

Description:Reads events off the network.

FoEvEventListener::DisplayEvent

Description:Sends event to Event Analyzer.

FoEvEventListener::DisplayConnect

Description:Request from FUI Event Analyzer to send events

FoEvEventListener::DisplayDisconnect

Description:Request from FUI Event Analyzer to quit sending

events

FoEvEventListener::Init

Description:Initializes Event Listener attributes

FoEvEventListener::Run

Description:Main loop of Event Listener

Class Name: FoEvFormattedEvent

Description: Event generated by Event Archiver. Event Archiver uses FoEvEvent and

the event database to generate the FoEvFormattedEvent. FoEvFormattedE-
vent gets archived, mutlicasted, and displayed by FUI Event Analyzer.

Features:

Attributes:

myEventID: EcTInt

Description:event number used to index into the event database

myTime:EcTTime

Description:Hourly event filename. Naming convention is

YYYYDDDHH.evt

myEventID: EcTInt

Description:event number used to index into the event database

mySpacecraftID:String

Descripton:identifies spacecraft.

mySubsystem:Container*

Description:identifies subsystems

(CERES, MOPPITT, MISR, ASTER, MODIS)

3-84 305-CD-049-001

myType:Container*

Description:type of event

(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)

myNode:String

Description:identifies node name.

(EOC Workstation, IST, Data Server, RT Server)

myMessage:String

Description:The actual event text. Background text from

database combined with ParamList from FoEvEvent.

mySeverity:EcTInt

Description:Events are warnings or alarms.

myLineNumber:EcTInt

Description:Line number of event

Use Macro __LINE__ for this argument

myFile:String

Description:File name of event

Use Macro __FILE__ for this argument

Operations:

FoEvFormattedEvent::FormatMessage

Description:Combines background text with ParamList from

FoEvEvent

FoEvFormattedEvent::SetTime

Description:Gets system time and sets time attributeof

FoEvFormattedEvent.

FoEvFormattedEvent::BuildEvent

Description:Sets attributes within the FoEvFormattedEvent.

3.8 DMS Event Retrieval
A user can build an event request when there is a need to analyze historical events. The event re-
quest will consist of start time, stop time, event identifier, event type, subsystem/instrument iden-
tifier and spacecraft identifier. The event request is sent to the data server where the requested
events are retrieved and sent back to the requesting workstation. The requested events are stored
in an event history file. The user interface can display the events contained in the event history file.

3.8.1 DMS Event Retrieval Context

The DMS event retrieval interfaces with the user interface subsystem, as shown in the Context Di-
agram and summarized below.

3-85 305-CD-049-001

FOS User Interface:

Sends unformatted events to the DMS. The events are formatted and archived by the DMS at
the data server.

3.8.2 DMS Event Retrieval Interfaces

3.8.3 DMS Event Retrieval Object Model

The FoRqEventRequest class provides the user a way to retrieve events from the events archive.
The FoRqEventRequest class sends event requests to the FdEvEventRetriever class.

The FdEvEventRetriever class is responsible for reading formatted events from the event archive
and creating an event history file from the formatted events.

The FdDsFileManager retrieves event files from long-term storage if needed.

The FdDbMetadata class provides an interface to Sybase. This class allows access to information
about all files stored by DMS.

The FdEvFormattedEvent contains information about any event generated by the system. Such in-
formation as time, spacecraft id, subsystem, type, node, message severity, event application line,
and event application file are contained in this class.

The FdEvEventFile class is a hourly file used to store formatted events.

The FoEvEventHistory class is created from the FdEvEventRetriever class, and is read by the FOS
User Interface. This class maintains the formatted events requested by the FOS User Interface.

The FdEvEventRetriever class determines if the event files needed to support the request are on-
line by accessing information provided by the FdDbMetadata class. The FdEventRetriever class
makes a request to the FdDsFileManager class if event files are needed from long-term storage.
The FdEvEventRetriever class uses information provided in the request to read FoEvFormattedE-
vent classes from the FdEvEventFile class. A FoEvEventHistory class is created from the FoEv-
FormattedEvent classes.

Table 3.8-1. DMS Event Retrieval Interfaces

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Event history
request

FoRqEventReque
st

Used by FUI when
requesting event history

DMS FUI Frequest

3-86
305-C

D
-049-001

DMS
Event

Retrieval

User
Interface

This System

Event
History

File

Event
History

Requests

Figure 3.8-1. DMS Event Retrieval Context Diagram

3-87
305-C

D
-049-001

FoRqEventRequest

myTargetDir
myFileName

Send()

mySpacecraft

FdEvFormattedEvent

myTime
mySpacecraft
mySubsystem
myType
myNode
myMessage

FdEvEventRetriever

FdDbMetadata

myFileName
myPath

RetrieveEvent()

FdEvEventFile

myFileName

myType
myStorageLoc

mySeverity

myStartTime
myStopTime
mySubsystems
myEventTypes
myStatus
myProcessId

FoEvEventHistory

Write(FdEvFormattedEvent)
Read(FdEvFormattedEvent)

Write(FdEvFormattedEvent)
Read(FdEvFormattedEvent)

myFileName

myLine
myFile

myHandle

Open()
Close()

FormatMessage(Background,ParamList)
SetTime()
BuildEvent()

Init()

FdDsFileManager

Open()
Close()

myEventId

ReadIndex(Time,FdEvFormattedEvent)

RetrieveFile(path,type,filename)

myCreateDate
myUR
mySize

 - : String
 - : String

 - : EcTTime
 - : RWCString
 - : Container*
 - : Container*
 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString

 + : EcTInt

 - : RWCString

 - : EcTInt
 - : EcTInt

 - : EcTInt

 - : EcTTime
 - : EcTTime
 - : Container*
 - : Container*
 - : FoTRqEventRequestStatus
 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : RWCString

 - : EcTInt
 - : RWCString

 - : EcTInt

 + : EcTInt
 + : EcTInt

 + : EcTInt
 + : EcTInt
 + : EcTInt

 + : EcTVoid

 + : EcTInt
 + : EcTInt

 - : EcTInt

 + : EcTInt

 - : RWTime
 - : EcTInt
 - : EcTInt

sent to

accessed
by

reads

creates

retrieves
from

contains

contains

Figure 3.8-2. DMS Event Retrieval Object Model

3-88 305-CD-049-001

3.8.4 DMS Event Retrieval Dynamic Model

3.8.4.1 DMS Event Retrieval Scenario Abstract

The purpose of the Event Retrieval scenario is to describe the process by which events are retrieved
from the data server, and how an event history file is created. The event trace for this scenario can
be found in Figure 3.8-3.

3.8.4.2 DMS Event Retrieval Summary Information

Interfaces:

User Interface

Stimulus:

FoRqEventRequest is instantiated by the FOS User Interface.

Desired Response:

Event History file is created.

Pre-Conditions:

Event applications initialized.

Post-Conditions:

Formatted events are stored in the event history file.

3.8.4.3 DMS Event Retrieval Scenario Description

The FOS User Interface will instantiate an FoRqEventRequest class when an event history file
needs to be created. The event request is sent to the FdEvEventRetriever class.

The FdEvEventRetriever class determines if the events file needed to support the request are on-
line by accessing information provided by the FdDbMetadata class. The FdEventRetriever class
makes a request to the FdDsFileManager class if event files are needed from long-term storage.
The FdEvEventRetriever class uses information provided in the request to read FoEvFormattedE-
vent classes from the FdEvEventFile class. A FoEvEventHistory class is created from the FoEv-
FormattedEvent classes.

3-89
305-C

D
-049-001

FUI Event
Request

FoRqEvent
Request

FdEvEvent
Retriever

FoEvEvent
HistoryFdDbMetadata

FdEvent
File

FdDsFile
Manager

generates

sends event
request

reads
metadata

creates

sends completion
notification

sends request

reads

Sends event files

status

Figure 3.8-3 . DMS Event Retrieval Event Trace

3-90 305-CD-049-001

3.8.3.5 DMS Event Retrieval Data Dictionary

Class Name: FdEvEventFile

Description: Archived event file.

Features:

Attributes:

myFileName::String

Description:Hourly event filename. Naming convention is

YYYYDDDHH.evt

myHandle::EcTInt

Description:handle of open event file

Operations:

FdEvEventFile:Open

Description:opens event file

FdEvEventFile:Close

Description:closes event file

FdEvEventFile::Read

Description:reads formatted event record from event file

FdEvEventFile::Write

Description:writes formatted event record from event file

Class Name: FdEvEventRetriever

Description: Controller class responsible for building event history files.

Features:

Attributes:

Operations:

FdEvEventRequest:Init

Description:Initializes Event Retriever

FdEvEventRetriever:Run

Description:Main loop of the Event Retriever

3-91 305-CD-049-001

Class Name:FdEvFormattedEvent
Description:Event generated by Event Archiver. Event Archiver uses FoEvEvent and

the event database to generate the FoEvFormattedEvent. FoEvFormattedEvent
gets archived, mutlicasted, and displayed by FUI Event Analyzer.

Features:
Attributes:

myEventID: EcTInt
Description:event number used to index into the event database

myTime:EcTTime
Description:Hourly event filename. Naming convention is

YYYYDDDHH.evt
mySpacecraftID:String
Descripton:identifies spacecraft.
mySubsystem:Container*

Description:identifies subsystems
(CERES, MOPPITT, MISR, ASTER, MODIS)

myType:Container*
Description:type of event

(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)
myNode:String

Description:identifies node name.
(EOC Workstation, IST, Data Server, RT Server)

myMessage:String
Description:The actual event text. Background text from

database combined with ParamList from FoEvEvent.
mySeverity:EcTInt

Description:Events are warnings or alarms.
myLineNumber:EcTInt

Description:Line number of event
Use Macro __LINE__ for this argument

myFile:String
Description:File name of event

Use Macro __FILE__ for this argument
Operations:

FoEvFormattedEvent::FormatMessage
Description:Combines background text with ParamList from

FoEvEvent
FoEvFormattedEvent::SetTime

Description:Gets system time and sets time attributeof
FoEvFormattedEvent.

FoEvFormattedEvent::BuildEvent
Description:Sets attributes within the FoEvFormattedEvent.

Class Name:FoEvEventHistory
Description:File generated from an event history request. Contains

FdEvFormattedEvent(s).
Features:

Attributes:
Operations:

3-92 305-CD-049-001

FoEvEventHistory:Open
Description:opens event history file

FoEvEventHistory:Close
Description:closes event history file

FoEvEventHistory::Read
Description:reads formatted event record from event history file

FoEvEventHistory::Write
Description:writes formatted event record from event history file

Class Name:FoRqEventRequest
Description:Interface class with between DMS and FUI Event Analyzer. This class is

used to request event history from DMS.
Features:

Attributes:
myTargetDir:String

Description:Directory where event history file is created.
myFileName:String

Descripton:Event History Filename.
mySpacecraft:String

Descripton:identifies spacecraft .
myStartTime:EcTTime

Description:start time of the event request
myStoptime:EcTTime

Description:stop time of the event request
mySubsystem:Container*

Description:identifies subsystems
(CERES, MOPITT, MISR, ASTER, MODIS)

myType:Container*
Description:type of events requested

(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)
myStatus:EcTInt

Description:Status of event request returned to FUI
myProcessId:EcTInt

Description:Id of the requesting FUI Event Analyzer
Operations:

FoRqEventRequest:Send
Description:Sends event request to Event Retriever

3-93 305-CD-049-001

3.9 DMS File Management, External Interfaces, Database Access
The DMS is responsible for providing file management, external interface, and database access
utilities. File management utilities allow the user to store, retrieve, and access DMS managed data
files. External interface utilities provide access to EDOS back orbit telemetry data, FDF products,
and SCDO long term storage data. Database utilities allow the user to update, extract, and retrieve
information from Sybase.

3.9.1 DMS File Management, External Interfaces, Database Access Context

The DMS utilities interface with several FOS subsystems and external interfaces, as shown in the
Context Diagram and summarized below.

FOS Applications:

Send unix data files and database updates to the DMS for storage.

Receives unix data files, database information, and external file arrival notifications from the
DMS.

EDOS:

Sends back orbit telemetry file, which is then merged with real-time telemetry to create a
seamless archive.

FDF:

Sends FDF data products to the EOC. The DMS notifies subsystems of the arrival of FDF data.
SCDO:

Receives data files from the EOC. Data files are stored at the DACC for the life of the mission.

Sends long term archive files to the DMS. The DMS requests data files from SCDO on an as
needed basis.

3-94
305-C

D
-049-001

FOS
Applications

EDOS

FDF

DMS

SCDO

This System

Back Orbit
Tlm File

FDF Products

Data files, Database Updates

Data files, Database Extracts,
FIle Arrival Notifications Data Files

Data Files

Figure 3.9-1. DMS File Management, External Interfaces,
Database Access Context Diagram

3-95 305-CD-049-001

3.9.2 DMS File Management, External Interfaces, Database Access Interfaces

3.9.3 DMS File Management, External Interfaces, Database Access Object Model

The FoDsFile class provides a wrapper for all subsystems to use when opening, reading, writing,
and closing data files, and the FdDsFileAccesser class provides a mechanism for storing and
retrieving FoDsFile classes. Software applications will link FoDsFile and FdDsFileAccessor into
their executable. Applications can obtain information about data files by using the GetFileInfo
operation within the FdDsFileAccesser class. Such information as path, type, creation date, size,
and long term storage can be retrieved. FdDsFileAccessor is a DMS owned proxy that
communicates with the FdDsFileManager by sending and retrieving FdDsFileInformation.

The FdDsFileManager class is responsible for maintaining FOS data files. The FdDsFileManager
uses the FdDbFileMeta to add, delete, update, and get file information from Sybase. Data files are
stored at the EOC local archive for a minimum of 7 days, and some as long as a month. When
files are created they are sent to the GSFC DACC for long term storage.

FdDsFileManager will send data files to the DACC via the FdLtIngest class. When a file is
successfully archived by the DACC a Universal Reference (UR) identification is returned. The
FdDsFileManager updates file metadata with the UR identifier. The EOC can acquire any file that
has been stored at the DACC by using the UR identifier. The FdDsFileManager uses the
FdLtDataServer class to retrieve any data file needed from the DACC.

The FdDsDiskCleaner class is responsible for purging data files from the EOC local disk. The
FdDsDiskCleaner class use information from the FdDsFileConfig class as to how long data files
are to remain at the EOC local archive.

The FdDsExternalInterface class is responsible for determining when data is received from EDOS,
FDF, or an IST. The DMS sends a FoNtNotification class to users of the data. The
FoNtNotification class informs users of the filename and path of the data received.

The FoDbAccessor provides application software an interface to Sybase. Application software
uses the FoDbAccessor to connect and disconnect from Sybase, and then the software uses the
appropriate subclass to add, delete, update, and get information.

The DMS uses the FdDbFileMeta, FdDbTlmMeta, and FdDbOdbTable to access information
about data files, telemetry archive, and operational databases. The FoDbCatalogEntry allows
CMS to store and retrieve information about loads. The FdDbActivityDef, FdDbActCmd, and
FdDbActCmdParm interfaces are used by Planning and Scheduling and CMS. These tables are
used to retrieve information about activities.

Table 3.9-1. DMS File Management, External Interfaces, Database Access Interfaces

Interface
Service

Interface Class Interface Class
Description

Service Provider Service
User

Frequency

File Access FdDsFileAccessor Allows for storage and
retrieval of data files

DMS All FOS Frequent

Database
Access

FdDbDBAccessor Allows for extracting,
updating, adding, and deleting
from Sybase database tables

DMS PAS,
FUI,
CMS,
CMND

Frequent

3-96
305-C

D
-049-001

FoDsFile

myFilename
myPath

FdDbFileMeta

myFilename
myPath
myType
myStorageLoc

FdLtDataServer

myFilename
myPath
myType

Init()

FdDsFileManager

Init()

myCreateDate
StoreFile(path,type,filename)

Open(file,path,action)
Close(fileptr)
Read(fileptr,recptr,size)
Write(fileptr,recptr,size)

RetrieveFile(path,type,filename)

FdDsFileAccessor

StoreFile(path,filename,type)
RetrieveFile(path,filename,type)
GetFileInfo(filename,path,type,date)

FdLtIngest

myFilename

Acquire(UR,Path)

myPath
myType

Init()
Ingest(Filename,Path,Type,Size,Date)

FdDsFileInformation

myFileName
myPath
myType
myDate

Proxy used by
all Subsystems

myUR

myUR myUR

mySize

mySize
myCreateDate

myStatus
myAction

UpdateMeta(path,type,filename,date,UR)
ExtractMeta(filename,type,data,UR)

DsClESDTReference

Acquire(FileMeta)

DsClESDTReferenceCollector

Insert(FileMeta)

SCDO I/F
Class

SCDO I/F
Class

FdEvEventLogger

GenEvent()

{shared - FDM with all S/S}

 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt

 - : RWCString
 - : EcTint
 - : EcTint

 - : EcTVoid

 - : EcTVoid

 - : RWTime
 + : EcTInt

 + : fileptr
 + : EctInt
 + : EctInt
 + : EctInt

 + : EcTInt

 + : EcTInt
 + : EcTInt

 - : RWCString

 + : EcTInt

 - : RWCString
 - : EcTint

 - : EcTVoid
 + : EcTInt

 - : RWCString
 - : RWCString
 - : EcTInt
 - : RWTime

 - : EcTint

 - : EcTint - : EcTInt

 - : EcTInt

 - : EcTInt
 - : RWTime

 - : EcTInt
 - : EcTInt

 + : EcTInt
 + : EcTInt

 + : EcTInt + : EcTInt

Sends to

1+

Accesses
1+

Retrieves
from

1+

Sends/
Retrieves

Sends/
Retrieves

Reads/
Writes

Acquires
1+

Receives
1+

Figure 3.9-2. DMS File Management, External Interfaces,
Database Access Object Model

3-97
305-C

D
-049-001

FdDbFileMeta

myFilename
myPath
myType
myStorageLoc

FdDsFileManager

Init()

myCreateDate

FdDsFileConfig

myType:EcTInt
myDuration

GetFileInfo()

StoreFile(path,type,filename)
RetrieveFile(path,type,filename)

FdDsDiskCleaner

FdDsExternalInterface

Init()

FoNtNotification

myFileName

SendNotification(process)

myPath

Init()
CleanDisk()
DeleteFile(filename) myUR

mySize

myInterface

FdDsEdosInterface FdDsFdfInterface

PopulateDB()
FormatData()

Send(path,file)
Retrieve(path,file)

UpdateMeta(path,type,filename,date,UR)
ExtractMeta(filename,type,date,UR)

myDirectory

myDirectory

PollDirectory(fileexists)

ValidateData()

myTimer

FdEvEventLogger

GenEvent()

 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt - : EcTVoid

 - : RWTime

 - : EcTInt
 - : EcTInt

 + : EcTInt

 + : EcTInt
 + : EcTInt

 + : EcTVoid

 - : RWCString

 + : EcTInt

 - : RWCString

 + : EcTVoid
 + : EcTInt
 + : EcTInt - : EcTint

 - : EcTInt

 - : EcTInt

 + : EcTInt
 + : EcTInt

 + : EcTInt

 - : RWCString

 - : RWCString

 + : EcTInt

 + : EcTInt

 - : RWTimer

Reads

1+

Initialized
by

Accesses
1+

Accesses

Sent
by

Sends

1+

Figure 3.9-3.DMS File Management, External Interfaces,
Database Access Object Model

3-98
305-C

D
-049-001

FdDbAccessor

FdDbFileMeta

myConnection

Connect(UserId,PassWd)

myFilename
myPath
myType
myStorageLoc

FoDbCatalogEntry

myDASId
myLoadName
myLoadSize
myLoadType
myOwner
mySpacecraftLocation
myStorageLocation
myUplinkTime
myValidUplinkPeriod

FdDbTlmMeta

DisConnect(Connection)

myStartTime
myStopTime
myDataSource

myCreateDate

FdDbOdbTable

myOdbName
myOdbTime

FdDbActivityDef

myActName
myOwner
myResID
myStrtTrig
myOvrdFlag
myStrtTrigDelta
myMinDur
myDuration
myDurOvrdFlag
myEntryModes
myMode
myExitMode

FdDbActCmd

myActName
myCmdMnem
mySSInd
myDeltaTime
myCmdType

FdDbActCmdParm

myActName
myCmdMnem
myParmName
myLowLimit
myHighLimit
myValidVals
myDefaultVal
myModFlag

myUR
mySize

FdDbOrbitEvents

myOrbitName
myOrbitNumber
mySequence
myTime

Add(TablePtr,Data)
Update(TablePtr,Data)

myDatabase
myTable

FoLdUlinkInfo

myLoadName
myTimeofUplink

myUplinkLoads
myNumTimesSchd
myNumberUplinkLoads

DBTools

COTS

Delete(TablePtr,Data)
Extract(TablePtr,Data)

 - : RWDBConnection

 + : RWDBConnection

 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt

 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWTime
 - : FOSTimeInterval

 + : EcTInt

 - : RWTime
 - : RWTime
 - : EcTInt

 - : RWTime

 - : RWCString
 - : RWTime

 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString
 - : RWTime
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCSting

 - : EcTint
 - : EcTInt

 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWTime

 + : EcTInt
 + : EcTInt

 - : RWDBDatabae
 - : RWDBTable

 - : RWCString
 - : RWTime

 - : RWSlistCollectables
 - : EcTInt
 - : EcTInt

 + : EcTInt
 + : EcTInt

1+

Accesses

Figure 3.9-4.DMS File Management, External Interfaces,
Database Access Object Model

3-99 305-CD-049-001

3.9.4 DMS File Management, External Interfaces, Database Access Dynamic Model

3.9.4.1.1 DMS File Storage Scenario Abstract

The purpose of the File Storage scenario is to describe the process by which unix data files are
stored at the EOC and sent to long term storage. The event trace for this scenario can be found in
Figure 3.9-5.

3.9.4.1. 2 DMS File Storage Summary Information

Interfaces:

User Interface

Analysis

Telemetry

Command

Resource Management

Real-time Contact Manager

Planning and Scheduling

Command Management

Stimulus:

FdDsFileAccessor receives a request to store a data file.

Desired Response:

Successful status returned to FOS application.

Participating Classes:

FoDsFile

FdDsFileAccessor

FdDsFileManager

FdDbFileMeta

FdLtIngest

DsClESDTReferenceCollector

Pre-Conditions

SCDO interface established.

Post-Conditions

Data file is stored at EOC local archive, and at the SCDO long term archive.

3-100
305-C

D
-049-001

FOS
Application

FdDsFile
Accessor

FdLtScdo
Ingest

FdDsFile
Meta

FdDsFile
Manager

Store
Request

Store
Request

Status

Metadata
Update

Status

Status

Store
Request

Figure 3.9-5. DMS File Storage Event Trace

3-101 305-CD-049-001

3.9.4.3 DMS File Storage Scenario Description

FOS applications will store data files by using the FdDsFileAccessor class. The FdDsFileAccessor
will send FdDsFileInformation to the FdDsFileManager concerning the data file that needs stored.
The FdDsFileManager will copy the data file to the appropriate directory by using information
from the FdDsFileInformation class. File metadata within Sybase is updated using the FdDs-
FileMeta class. FdDsFileMeta is a subclass of the FdDbAccessor class. The FdDsFileManager
class will send the data file to long term storage by calling the FdLtIngest Ingest operation.
FdLtIngest class uses SCDO provided interface classes to store data files in long term storage.

3.9.4.2.1 DMS File Retrieval Scenario Abstract

The purpose of the File Retrieval scenario is to describe the process by which unix data files are
retrieved from the EOC local archive, or SCDO long term archive. The event trace for this sce-
nario can be found in Figure 3.9-6.

3.9.4.2.2 DMS File Retrieval Summary Information

Interfaces:

User Interface

Analysis

Telemetry

Command

Resource Management

Planning and Scheduling

Command Management

Stimulus:

FdDsFileAccessor receives a request to retrieve a data file.

Desired Response:

FOS application receives successful status and pointer to unix data file.

Participating Classes:

FoDsFile

FdDsFileAccessor

FdDsFileManager

FdDbFileMeta

FdLtDataServer

DsClESDTReference

Pre-Conditions

SCDO interface established.

Post-Conditions

Data file is retrieved from either EOC local archive, or SCDO long term archive.

3-102
305-C

D
-049-001

FOS
Application

FdDsFile
Manager

FdLtScdo
DataServer

DsClESDT
ReferenceFoDsFile

FdDsFile
Accessor

FdDsFile
Meta

Retrieve
Request

Retrieve Request

Universal
Reference

Archived
File

Read

Status

Retrieve
Request

Metadata
Request

Status, UR

Status

Status

Status

Status

Figure 3.9-6. DMS File Retrieval Event Trace

3-103 305-CD-049-001

3.9.4.2.3 DMS File Retrieval Scenario Description

FOS applications will retrieve data files by using the FdDsFileAccessor class. The FdDsFileAc-
cessor will send FdDsFileInformation to the FdDsFileManager concerning the data file that needs
retrieved. The FdDsFileManager will access file metadata via the FdDsFileMeta class. The FdDs-
FileManager will used the file metadata to determine if the data file needs retrieved from long term
storage. If so, a request is sent to the FdLtDataServer class for the data file. The FdLtDataServer
will request files from SCDO provided classes. Once the data file is retrieved from long term stor-
age, the FdDsFileManager will copy the data file to the requested path. The FOS application will
then use the FoDsFile class to open, close, read, and write to a file.

 3.9.4.3.1 DMS Sybase Table Access Scenario Abstract

The purpose of the Sybase Table Access scenario is to describe the process by which a FOS appli-
cation can update or extract table information from Sybase. The event trace for this scenario can
be found in Figure 3.9-7.

3.9.4.3.2 DMS Sybase Table Access Summary Information

Interfaces:

User Interface

Planning and Scheduling

Command Management

Command

Stimulus:

FoDbAccessor receives an update or extract request from a FOS application.

Desired Response:

The requesting FOS application updates or extracts information from

within Sybase.

Participating Classes:

FoDbAccessor

Subclass of FoDbAccessor

FOS application Sybase user

DBTools classes (COTS)

Pre-Conditions

Sybase must be initialized.

Post-Conditions

FOS application receives status from DMS DBAccessor

3-104
305-C

D
-049-001

CMS FoDbAccessor
FoDbCatalogEntry

DBTools

Connect

Connect

Connect Status

Update,
Extract

Update, Extract

Connect Status

Disconnect

Status, Data

Status,
Data

Disconnect

Figure 3.9-7. DMS Sybase Table Access Event Trace

3-105 305-CD-049-001

3.9.4.3.3 DMS Sybase Table Access Scenario Description

When FOS application software needs to make updates to or extract information from a Sybase
table, the application will do so by using the FoDbAccessor class. The FoDbAccessor is a super-
class which contains connect, disconnect, update, and extract operations. FOS application soft-
ware will link in the FoDbAccessor and the subclass which corresponds to the needed database
table when they create their executable. The DBAccessor uses DBTools, which is a RoqueWave
COTS product, to access Sybase. To update a table, the application software will instantiate a
FoDbAccessor subclass, and then call the FoDbAccessor update operation passing needed infor-
mation. To extract from a Sybase table, the application software will instantiate a FoDbAccessor
subclasss, and then call the FoDbAccessor extract operation passing needed information. The
FoDbAccessor subclass will contain the retrieved information when the operation completes.

3.9.4.4.1 DMS FDF Interface Scenario Abstract

The purpose of the FDF Interface scenario is to describe the process by which the DMS receives
FDF data, and notifies FOS applications that data has arrived. The event trace for this scenario
can be found in Figure 3.9-8.

3.9.4.4.2 DMS FDF Interface Summary Information

Interfaces:

Planning and Scheduling

Analysis

Command Management

Stimulus:

FdDsFdfInterface receives FDF products.

Desired Response:

Notification is sent to FOS processes which desire FDF products.

Participating Classes:

FdDsFdfInterface

FdDsExternalInterface

FoNtNotification

FdDsFileManager

Pre-Conditions

FdDsFdfInterface must be polling directory in which FDF products arrives.

Post-Conditions

FdDsFdfInterface polls FDF products directory.

3-106
305-C

D
-049-001

FdDsFdf
Interface

FdDsExternal
Interface

FdDsFile
Manager

FOS
Application

FoNt
Notification

FdEvEvent
Logger

Poll
Directory

Store
File

Status

Notify
Process

Send Event

Notify
Process

Figure 3.9-8. DMS FDF Interface Event Trace

3-107 305-CD-049-001

3.9.4.4.3 DMS FDF Interface Scenario Description

The FdDsFdfInterface class is always polling a dedicated FDF product directory. Once FDF sends
data to the dedicated directory, the FdDsFdfInterface class will validate and format the new FDF
data. Once validated, the FdDsFdInterface class will store the FDF data using the FdDsFileMan-
ager class. Once the data is stored the FdDsFdfInterface class will send FoNtNotifications to Plan-
ning and Scheduling, Command Management, and Analysis Subsystems.

3.9.6 DMS File Management, External Interfaces, Database Access Data Dictionary

FdDbAccessor

class FdDbAccessor

This class is used to interface with Sybase. The user connect to Sybase, disconnect from Sy-
base, update table information, and extract table information. Extract and update calls might
need to be moved to the subclass level.

Public Functions

RWDBConnection Connect(UserId, PassWd)

This function allows a user to connect to a Sybase Database.

EcTInt DisConnect(Connection)

Disconnect

This function allows a user to disconnect from Sybase

EcTInt Extract(TablePtr, Data)

This member function extracts data from a Sybase table. THis is a generic extract, and this
function may evolve to multiple types of extracts.

EcTInt Update(TablePtr, Data)

This member function updates a Sybase table. This is a generic update, and this function
may evolve to multiple types of updates

Private Data

RWDBConnection myConnection

This member variable is the connection to Sybase.

RWDBDatabae myDatabase

This member variable is the database the myConnection points to.

RWDBTable myTable

This member variable is the table the myConnection points to.

3-108 305-CD-049-001

FdDbActCmd

class FdDbActCmd

The Activity Command Table provides the defintions of commands that make up a specific ac-
tivity

Base Classes

public FdDbAccessor

Private Data

RWCString myActName

activity name specifies a unique identifier for a given activity.

RWCString myCmdMnem

command mnemonic represents the mnemonic of an ATC stored command, or a valid EOS
Command Language (ECL) directive

RWCString myCmdType

command type represents the type of command used in the activity.

EcTInt myDeltaTime

delta time is the time offset from the start time or the stop time of the activity.

RWCString mySSind

start/stop time indicator is used to specify whether the delta time specified for the command
is associated with the start time or the stop time of the activity.

FdDbActCmdParm

class FdDbActCmdParm

Base Classes

public FdDbAccessor

Private Data

RWCString myActName

activity name specifies a unique identifier for a given activity.

RWCString myCmdMnem

parameter name identifies the parameter associated with a command.

EcTInt myDefaultVal

default value indicates the value to be used if the no value is specified when the activity is
scheduled.

3-109 305-CD-049-001

EcTInt myHighLimit

high limit indicates the highest value in the range of values for the parameter.

EcTInt myLowLimit

low limit indicates the lowest value in the range of values for the parameter.

RWCString myModeFlag

modifiable flag indicates whether a different parameter value can be specified when sched-
uling an activity.

RWCString myValidVals

valid values indicate the discrete values in which the parameter must occur.

FdDbActivityDef

class FdDbActivityDef

stp/omt class definition 1457203

Base Classes

public FdDbAccessor

Private Data

RWCString myActName

activity name specifies a unique identifier for a given activity.

RWCString myDurOvrdFlag

duration override flag is used to indicate if the duration specified for activity may be over-
ridden when scheduling an activity

EcTInt myDuration

duration specifies the default duration for the activity.

RWCString myEntryModes

entry modes specifies all valid modes of the resource at the time the activity is scheduled.

RWCString myExitMode

string mode specifies the mode of the resource at the end of the activity.

ECTInt myMinDur

minimum duration specifies the minimum duration for the activity.

RWCString myMode

mode specifes the mode of the resource during the activity period.

RWCString myOvrdFlag

start trigger override flag is used to indicate if the start trigger event may be overridden
when scheduling an activity.

3-110 305-CD-049-001

EctInt myOwner

owner specifies the user ID of the person/group who is authorized to define, modify, and/
or schedule the give activity.

EcTInt myResID

resource ID specifies the name of the resource that the activity operates on.

RWCString myStrtTrig

start trigger specifies the name of the event that is used to schedule the give activity.

EcTInt myStrtTrigDelta

start trigger delta indicates the time offset, in seconds, from the start trigger event used for
sheduling the activity.

FdDbFileMeta

class FdDbFileMeta

This class maintains information about data files The user can access this information through
the DBAccessor.

Base Classes

public FdDbAccessor

Private Data

RWTime myCreateDate

file creation date

RWCString myFilename

name of file

RWCString myPath

path where file is located

EcTInt mySize

size of data file

EcTInt myStorageLoc

storage location (i.e, local EOC archive, long-term, or both)

EcTInt myType

Type of file (i.e., report, archive,event,etc...)

EcTint myUR

Universal Reference - this applies when file is sent to long term storage

3-111 305-CD-049-001

FdDbOdbTable

class FdDbOdbTable

THe ODB table class is used to determine when databases went on-line

Base Classes

public FdDbAccessor

Private Data

RWCString myOdbName

Operational database name

RWTime myOdbTime

Time ODB went on-line

FdDbOrbitEvents

class FdDbOrbitEvents

This class allows access to the orbit event table. This table is populated when the EOC receives
FDF data.

Base Classes

public FdDbAccessor

Private Data

RWCString myOrbitName

Orbit Event Name

EcTInt myOrbitNumber

Acutal Orbit Number

EcTInt mySequence

Sequence of event in a given orbit

RWTime myTime

Time of an Orbit

FdDbTlmMeta

class FdDbTlmMeta

Table that contains information about telemetry data that is stored at the EOC and the DACC

3-112 305-CD-049-001

Base Classes

public FdDbAccessor

Private Data

EcTInt myDataSource

SOurce of telemetry R/T, Back Orbit, NCC, EDOS

RWTime myStartTime

Start time that corresponds to a stop time of tlm data

RWTime myStopTime

Stop time that corresponds to a start time of tlm data

FdDsDiskCleaner

class FdDsDiskCleaner

This class cleans the EOC local archive by removing old files from the disk. The old files can
be retrieved from long term archive if needed.

Public Functions

EcTInt CleanDisk(void)

This member function wakes up daily and cleans old data from the EOC local archive.

EcTInt DeleteFile(filename)

THis function removes file from the EOC local archive.

EcTVoid Init(void)

This member function initializes variables and connnections.

Private Data

RWTimer myTimer

This member variable is a daily timer.

FdDsEdosInterface

class FdDsEdosInterface

This class is derived from FdDsExternalInterface. This class is responsible for polling a direc-
tory waiting for back orbit telemetry.

3-113 305-CD-049-001

Base Classes

public FdDsExternalInterface

FdDsExternalInterface

class FdDsExternalInterface

THis class is a base class that allows for sending, receiving external data, polls directorys for
data, and sends notifications when data arrives.

Public Functions

EcTVoid Init(void)

Initializes variables and connections

EcTInt PollDirectory(fileexists)

Polls a directory waiting for data to arrive from external interace. Notifies subsystems data
when data arives.

EcTInt Retrieve(file)

Retrieves a file from an external interface

EcTInt Send(file)

Sends a file to an external interface

EcTInt SendNotification(process)

Notifies subsystems when external data arrives.

Private Data

RWCString myDirectory

Directory data files are stored in

EcTInt myInterface

External interface connection - may not be one when using polling directory interface

FdDsFdfInterface

class FdDsFdfInterface

This class is derived from FdDsExternalInterface. This class provides utilities for formating,
validating, and populating Sybase with FDF data.

3-114 305-CD-049-001

Base Classes

public FdDsExternalInterface

Public Functions

EcTInt FormatData()

Formats FDF in a format usable by FOS appliations

EcTInt PopulateDB()

Populates Sybase with FDF data

EcTInt ValidateData()

Validates FDF data

FdDsFileAccessor

class FdDsFileAccessor

Public Functions

EcTInt GetFileInfo(filename, path)

THis member function get information about a DMS managed data file

EctInt RetrieveFile(path, filename, type)

This member function retrieves a DMS managed file

EcTInt StoreFile(path, filename, type)

This member function stores a data file with DMS

FdDsFileConfig

class FdDsFileConfig

This class contains information about the data files in the EOC local archive.

Public Functions

EcTInt GetFileInfo()

This member function reads data file information from a config file.

Private Data

RWCSTring myDirectory

This member variable is the directory where data file types reside.

EcTInt myDuration

This member variable holds the length of time a given data file type remains at the local
EOC archive.

3-115 305-CD-049-001

EcTInt myType

This member variable is the type of data file.

FdDsFileInformation

class FdDsFileInformation

This class gets passed between the FdDsFileManager and the FdDsFileAccessor classes. It
contains information for storing and retrieving files, and updating and extracting file metadata.

Private Data

EcTInt myAction

This member variable contains action to be taken. Store, Retrieve, UpdateMeta, or Extract-
Meta.

RWTime myDate

This member variable contains creation data of file.

RWCString myFileName

This member variable contains the actual filename.

RWCString myPath

This member variable contains the path of the file.

EcTInt myStatus

This member variable contains status of the request.

EcTInt myType

This member varialbe contains file type.

FdDsFileManager

class FdDsFileManager

This class stores and retrieves files, updates file metadata, and extracts file metadata.

Public Functions

EcTInt ExtractMeta(filename, type, date, UR)

Extracts data file information from Sybase.

EcTInt RetrieveFile(path, type, filename)

THis member function retrieves a file from the DMS managed area.

EcTInt StoreFile(path, type, filename)

This member function takes a file from path and stores it in DMS managed directory.

EcTInt UpdateMeta(path, type, fileanme, date, UR)

Updates information about data files in Sybase

3-116 305-CD-049-001

FdLtDataServer

class FdLtDataServer

This class provides a interface with the SCDO Data Server. This class retrieves data files need-
ed from long term storage.

Public Functions

EcTInt Acquire(UR, Path)

This member function acquire data from long term storage by passing the Universal
Refernece.

Private Functions

EcTVoid Init(void)

This member functions initializes variables and connections

Private Data

RWCString myFilename

This member variable contains name of file to retrieve.

EcTint myPath

This member variable contains path to put long term file in.

EcTint myType

This member variable contains type of file to retrieve.

EcTInt myUR

This member variable contains the Universal Reference of file to retrieve.

FdLtIngest

class FdLtIngest

This class is the interface class used to send data files to long term storage

Public Functions

EcTInt Ingest(Filename, Path, Type, Size, Date)

This member function sends a local archive file to long term storage

Private Functions

EcTVoid Init(void)

This member function initializes variables and connections.

3-117 305-CD-049-001

Private Data

RWTime myCreateDate

This member variable is the file creation date. .

RWCString myFilename

This member variable contains name of file sent to long term storage.

RWCString myPath

This member variable contains path where SCDO Ingest pulls file from.

EcTInt mySize

This member variable contains size of file

EcTint myType

This member variable contains type of file to send to long term storage.

EcTint myUR

This member variable is the Universal Reference of the file - returned from SCDO Ingest

FoDbCatalogEntry

class FoDbCatalogEntry

This class provide CMS with interface with Catalog Entry table within Sybase. Information
about loads is accessed using this class.

Base Classes

public FdDbAccessor

Private Data

EcTInt myDASId
EcTInt myNumTimesSchd
EcTInt myNumberUplinkLoads
RWSlistCollectables myUplinkLoads

THe id of the DAS in which the load was requested to be uplinked.

RWCString myLoadName

The unique name identifying the load.

EcTInt myLoadSize

The size of the load in words.

RWCString myLoadType

The type of load - table, RTS, ATC, flight software, or microprocessor

RWCString myOwner

The user or group that owns the load.

3-118 305-CD-049-001

RWCString mySpacecraftLocation

The location of the load in the spacecrafts memory.

RWCString myStorageLocation

The location of the load in DMS.

RWTime myUplinkTime

The time at which the load was uplinked to the spacecraft.

FOSTimeInterval myValidUplinkPeriod

The period of time for which the load is valid.

FoDsFile

class FoDsFile

Class used by FOS to access data files. This class gives FOS a generic interface to data files.
This class will evolve to have many reads and writes of files.

Public Functions

EctInt Close(fileptr)

This classes closes a previously opened file.

fileptr Open(file, path, action)

This member functions opens the specified data file.

EctInt Read(fileptr, recptr, size)

This member function reads the file pointed to by fileptr.

EctInt Write(fileptr, recptr, size)

This member funciton writes to file pointed to by fileptr.

Private Data

RWCString myFilename

Name of file to open, close, read, or write to.

RWCString myPath

Path of filename being accessed.

FoLdUlinkInfo

class FoLdUlinkInfo

Private Data

RWCString myLoadName

Name of Load

3-119 305-CD-049-001

RWTime myTimeofUplink

Time load was uplinked to spacecraft

FoNtNotification

class FoNtNotification

This class is used to notify processes that a data file is available for processing.

Private Data

RWCString myFileName

This member variable contains name of file available for processing.

RWCString myPath

This member varaible contains path of available file.

3.10 DMS Telemetry Archiver

3.10.1 DMS Telemetry Archiver Context

The DMS Telemetry Archiver interfaces are described below and displayed in the context diagram.

RMS:

Initializes this instance of the archiver and provides the data required for this archiver to
configure itself properly.

Telemetry:

Sends a telemetry or dump EDU to be archived.

File Archival:

Receives the hourly telemetry file or the dump file.

3.10.2 DMS Telemetry Archiver Interfaces

Note: Above table is subject to change.

Table 3.10.2 DMS Telemetry Archiver Interface

Interface
Service

Interface Class Interface Class
Description

Service Provider Service
User

Frequency

Provide data
units from
TLM to DMS
archiver.

FdArTlmArchProx
y

Pass telemetry data units to
DMS.

DMS TLM Frequently

FdArEDU Data unit container

Get
configuration
information
from RMS.

FdCfRMSConfigP
roxy

Pass information to DMS. RMS DMS Upon
startup

3-120 305-CD-049-001

3.10.3 DMS Telemetry Archiver Object Model

The FdArTlmArchiver object is configured according to information received from RMS via the
FdCfRMSConfigProxy class. Once initialized, FdArTlmArchiver receives EDUs via FdArTl-
mArchProxy and manages their storage. FdArTlmArchiver receives the EDU by invoking the re-
trieveData function of the FdArUserData object. FdArUserData encompasses the interface
between the archiver and TLM. FdArTlmArchiver then builds and stores the SAU by using the
build and store methods contained in the FdArSAU object. FdArTlmArchiver continues receiving
EDUs until a data dropout is detected. During this process, FdArTlmArchiver invokes methods
contained in FdArSAU to check for valid sequence counts in the data (except for dumps). If se-
quence gaps are detected, FdArTlmArchiver uses FdMtRTUpdateNotification to update the meta-
data table for available telemetry.

A single instance of FdArSAU remains persistent throughout the contact. This object is responsi-
ble for building and storing the SAU. It also maintains the current telemetry sequence count and
verifies that the EDU sequence count is in order. In addition, FdArSAU updates and maintains the
start and stop time of the current, contiguous, telemetry stream (this is not done for dumps).

The FdArSAU object stores the SAU. The SAU consists of FdArHeader and FdArUserData.
FdArHeader contains the information pertinent to the particular EDU. FdArUserData contains the
actual EDU and the operation required to retrieve the EDU from TLM.

The FdArHourlyTlmFile object is responsible for operations on the local archive file. The FdM-
tUpdateNotification object provides the interface between the archiver and the archive metadata
table. This notification is sent whenever a new file is opened. The FdMtRTUpdateNotification
object provides the interface to the 'available telemetry' metadata table. This table contains start
and stop times of all contiguous telemetry data in the archive.

3.10.4 DMS Telemetry Archival Dynamic Model

3.10.4.1 DMS Telemetry Archival Scenario Abstract

3.10.4.2 DMS Telemetry Archival Summary Information

Interfaces:

RMS

TLM

File Archival

Stimulus:

Receipt of telemetry packets from telemetry.

Desired Response:

Storage of Standard Archive Units (SAUs) to a file.

Pre-Conditions:

Archiver software has been initiated.

Post-Conditions:

3-121
305-C

D
-049-001

DMS
Telemetry
Archiver

TLM RMS

File
ArchivalEDOS

This System

Tlm EDus
Dump EDUs Configuration Data

Hourly Tlm FilesGround
Telemetry

Figure 3.10-1. DMS Telemetry Archiver Context Diagram

3-122
305-C

D
-049-001

FdMtUpdateNotification

FdCfRMSConfigProxy

FdArTlmArchiver

FdArSAU

FdArHeader

FdArUserData

FdArBlock FdArEDU FdArPacket

FdArHourlyTlmFile

FdMtRTUpdateNotification

send(ListenAddr,DataTypeid)
receive()

FdArTlmArchProxy

myListenAddr
myDataTypeid
myDumpStart
myDumpStop
myDumpSource

init()
run()

send()
receive()

myDataForm
myScid
myDataType
myStopTime
myStartTime

setStartTime(time)
setStopTime(time)
setDataType(int)
setScid(int)
setDataForm(int)
receive()
send()

myFilename
myLocation

Close()
Write()
Read()
Open()

myLength
myScid
myDataTypeid
myTime
myDataSource
myQuality

retrieveData()
convertTime()

myFilename
myAction
myTime

receive()
send()
setAction(int)
setTime(time)
setFilename(char[36])

mySeqCount
myPrevSeqCount
myRTStartTime
myRTStopTime

Store()
Build()
setRTStartTime(time)
setRTStopTime(time)
getRTStartTime()
getRTStopTime()
checkSeqCount()
getPrevSeqCount()
getSeqCount()
setPrevSeqCount(int)
setSeqCount(int)

Gets

getsTimeFrom

StoresTo

sends

sends

builds

 + : int
 + : int

 - : int
 - : int
 - : int
 - : int
 - : int

 + : int
 + : int

 + : int
 + : int

 - : int
 - : int
 - : int
 - : time
 - : time

 + : void
 + : void
 + : void
 + : void
 + : void
 + : int
 + : int

 - : char[36]
 - : char[36]

 + : int
 + : int
 + : int
 + : int

 - : int
 - : int
 - : int
 - : time
 - : int
 - : int

 + : int
 + : time

 - : char[36]
 - : int
 - : time

 + : int
 + : int
 + : void
 + : void
 + : void

 - : int
 - : int
 - : time
 - : time

 + : int
 + : int
 + : void
 + : void
 + : time
 + : time
 + : int
 + : int
 + : int
 + : void
 + : void

1,2

1+

Figure 3.10-2. DMS Telemetry Archiver Object Model

3-123
305-C

D
-049-001

RT String FdArTlmArchiver FdArSAU FdArHeader FdArUserData FdMtUpdateNotificationFdArHourlyTlmFile FdMtRTUpdateNotificationFdCfRMSConfigProxy FdArTlmArchProxy

read configuration
data

builds header

gets time

creates

builds SAU

retrieves incoming data

send tlm file metadata notification

send RT metadata notification

store SAU to file

Figure 3.10-3. DMS Telemetry Archiver Event Trace

3-124 305-CD-049-001

3.10.4.3 DMS Telemetry Archival Scenario Description

The DMS telemetry archiver is initiated and retrieves its configuration information from RMS via
FdCfRMSConfigProxy. The archiver then waits until TLM begins sending data units to the ar-
chiver via FdArTlmArchProxy. Upon receipt of data, FdArTlmArchiver calls the build function
of FdArSAU to build an SAU from the incoming data unit. A time stamp is placed in the SAU and
the SAU header information is built. As each SAU is built, it is archived to an hourly telemetry
file via the I/O functions in FdArHourlyTlmFile. File metadata is updated when a new hourly file
is opened, and RT/PBK metadata is updated after each real-time contact.

3.10.5 DMS Telemetry Archiver Data Dictionary

FdArHeader

class FdArHeader

This class contains the SAU header information

Public Construction

FdArHeader()

This is the default constructor for the class

~FdArHeader()

This is the default destructor for the class

Private Data

int myDataSource

This member contains the data source

int myDataTypeid

This member contains the data type

int myLength

This member contains the data length

int myQuality

This member contains the data quality

int myScid

This member contains the spacecraft ID

time myTime

This member contains the time stamp

FdArHourlyTlmFile

class FdArHourlyTlmFile

This class contains the hourly telemetry file

3-125 305-CD-049-001

Public Construction

FdArHourlyTlmFile()

This is the default constructor for the class

~FdArHourlyTlmFile()

This is the default destructor for the class

Public Functions

int Close(void)

This function closes the hourly tlm file

int Open(void)

This function opens the hourly tlm file

int Read(void)

This function reads the hourly tlm file

int Write(void)

This function writes to the hourly tlm file

Private Data

char myFilename[36]

This member variable contains the tlm file name

FdArSAU

class FdArSAU

This class contains the Standard Archive Unit for the telemetry archiver, retriever, & playback
merger

Public Construction

FdArSAU()

This is the default constructor for the class

~FdArSAU()

This is the default destructor for the class

Public Functions

int Build()

This function builds the SAU

int Store()

This function stores the SAU

3-126 305-CD-049-001

int checkSeqCount(int)

This function validates the sequence count

int getPrevSeqCount()

This function retrieves the previous seq count

time getRTStartTime()

This function retrieves the stream start time

time getRTStopTime()

This function retrieves the stream stop time

int getSeqCount()

This function retrieves the sequence count

void setPrevSeqCount(int)

This function sets the previous sequence counter

void setRTStartTime(time)

This function sets the stream start time

void setRTStopTime(time)

This function sets the stream stop time

void setSeqCount(int)

This function sets the sequence count

Private Data

int myPrevSeqCount

This member variable contains the previous sequence count

time myRTStartTime

This member variable contains the stream start time

time myRTStopTime

This member variable contains the stream stop time

int mySeqCount

This member variable contains the current sequence count

FdArTlmArchProxy

class FdArTlmArchProxy

Public Construction

FdArTlmArchProxy()

This is the default constructor for the class

3-127 305-CD-049-001

~FdArTlmArchProxy()

This is the default destructor for the class

Public Functions

int receive()

This receives the configuration information

int send(myListenAddr, myDataTypeid)

This sends the configuration information

FdArTlmArchiver

class FdArTlmArchiver

This class contains the telemetry archiver

Public Construction

FdArTlmArchiver()

This is the default constructor for the class

~FdArTlmArchiver()

~FdArTlmArchiver();

This is the default destructor for the class

Public Functions

int init()

This function initializes the archiver for execution

int run()

This function executes the telemetry archiver

Private Data

int myDataTypeid

This member contains the data type for this archiver

int myListenAddr

This member contains the listen address for this archiver

FdArUserData

class FdArUserData

This class contains the EDU data

3-128 305-CD-049-001

Public Construction

FdArUserData()

This function is the default constructor

~FdArUserData()

This function is the default destructor

Public Functions

time convertTime()

This function converts the time in the EDU to the desired format

int retrieveData()

This function retrieves the EDU

FdCfRMSConfigProxy

class FdCfRMSConfigProxy

Public Construction

FdCfRMSConfigProxy()

This is the default constructor for the class

~FdCfRMSConfigProxy()

This is the default destructor for the class

Public Functions

int receive()

This receives the configuration information

int send(myListenAddr, myDataTypeid)

This sends the configuration information

FdMtRTUpdateNotification

class FdMtRTUpdateNotification

This class contains the interface between the playback merger and the RT/PBK metadata

Public Construction

FdMtRTUpdateNotification()

This is the default constructor for the class

~FdMtRTUpdateNotification()

This is the default destructor for the class

3-129 305-CD-049-001

Public Functions

int receive()

This function receives the notification

int send()

This function sends the notification

void setDataForm(int)

This function sets the Data Form attribute

void setDataType(int)

This function sets the Data Type attribute

void setScid(int)

This function sets the SCID attribute

void setStartTime(time)

This function sets the Start Time attribute

void setStopTime(time)

This function sets the Stop Time attribute

Private Data

int myDataForm

This member variable contains the stream form (RT vs PBK)

int myDataType

This member variable contains the stream data type

int myScid

This member variable contains the stream SC id

time myStartTime

This member variable contains the stream start time

time myStopTime

This member variable contains the stream stop time

FdMtUpdateNotification

class FdMtUpdateNotification

This class contains the interface between the playback merger and the DMS metadata

Public Construction

FdMtUpdateNotification()

This is the default constructor for the class

3-130 305-CD-049-001

~FdMtUpdateNotification()

This is the default constructor for the class

Public Functions

int receive(void)

This function receives the notification

int send(void)

This function sends the notification

void setAction(int)

This function sets the Action attribute

void setFilename(char)

This function sets the Filename attribute

void setTime(time)

This function sets the Time attribute

Private Data

int myAction

This member contains the requested action

char myFilename[36]

This member contains the filename for metadata

time myTime

This member contains the Time

3.11 DMS Telemetry Playback Merger
The DMS Telemetry Playback Merger is a persistent process responsible for receiving telemetry
housekeeping playback files from EDOS and then merging them with the existing hourly telemetry
files. The playback EDUs are stored in the archive and the telemetry from previous real-time con-
tacts is archived only if the playback file has a sequence gap or bad quality. As each hourly telem-
etry file is filled, it is then saved in both local and long-term storage.

3.11.1 DMS Playback Merger Context

The DMS Playback Merger interfaces are described below and displayed in the context diagram.

EDOS:

Sends a notification to the playback merger once a playback file has been sent to us and is
available to be merged.

Long-term Storage:

Receives notification from the playback merger that a complete hourly telemetry file is
available to be copied to long-term storage.

3-131 305-CD-049-001

Analysis:

Receives notification from the playback merger that an hourly telemetry file has been
successfully merged and is ready for Analysis to perform statistics on.

3.11.2 DMS Telemetry Playback Merge Interfaces

Note: Above table is subject to change.

3.11.3 DMS Telemetry Playback Merge Object Model

The FdArPbkMerger object merges playback housekeeping data with existing real-time and play-
back data in a seamless archive. FdArPbkMerger uses the receive function of FdArEDOSPbkIF
to await notification from EDOS when a playback file is available to be merged. Two FdArHour-
lyTlmFile objects are utilized - one for the existing hourly file and one for the temporary file which
will contain the merged data and which will eventually supersede the existing hourly file. The
FdArPbkFile object is utilized to access the playback files and read the EDUs from them. Once
the EDUs are read, FdArPbkMerger uses FdArSAU.build to build the SAUs from the EDUs. If a
sequence gap exists in the playback file, or if the playback SAU is of bad quality, then the existing
hourly telemetry file is opened and the matching SAU is retrieved (if it exists). In cases where a
sequence gap occurs which cannot currently be filled, FdArPbkMerger will move on and call Fd-
MtRTUpdateNotification.send to update the telemetry metadata to indicate that a gap exists. The
FdArUserData.convertTime function is used to verify that the spacecraft time of the EDU is valid.
When the top of an hour is reached, FdArPbkMerger calls FdMtUpdateNotification to update
metadata to reference the completed hourly file. Also, FdArPbkMerger calls FoArAnaIF.send to
notify Analysis that a new hourly telemetry file is now complete and ready for statistics calcula-
tions. When an hourly telemetry file is completely filled, FdArPbkMerger also calls FdLTSc-
doSend.send to notify long-term storage that a complete telemetry file is ready to be copied over
to the long-term archive.

The FdArSAU object is used to build and store the SAUs. It also maintains the current telemetry
sequence count and verifies that the EDU sequence count is in order. In addition, FdArSAU ver-
ifies, updates and maintains the start & stop time of the current, contiguous, telemetry stream.

Table 3.11-1. Telemetry Playback Merge Interfaces

Interface
Service

Interface Class Interface Class
Description

Service Provider Service
User

Frequency

Send hourly
files to SCDO

FdLTScdoSend Notify SCDO of new
hourly file.

DMS DMS Approx. 2/
day

Inform
Analysis that a
tlm file is ready
for statistics.

FoArAnaIF Notify Analysis
subsystem of new hourly
tlm file.

ANA DMS Approx. 2/
day

Inform DMS
that a
playback file is
ready to be
merged.

FdArEDOSPbkIF Notify DMS that a
playback file is ready.

EDOS DMS Approx. 2/
day

3-132
305-C

D
-049-001

DMS
Telemetry
Playback
Merger

File
ArchivalEDOS

SCDO Analysis

DMS
Metadata

DMS
Event
Logger

This System

Playback File
Playback File Notification

Hourly Tlm Files
Tlm File Notification

File Updates
Event Msgs

Complete Hourly Tlm Files

Partial Hourly Tlm Files

Status

Figure 3.11-1. DMS Telemetry Playback Merger Context Diagram

3-133 305-CD-049-001

The FdArHourlyTlmFile object is responsible for operations on the archive file. The FdMtUp-
dateNotification object provides the interface between the archiver and the archive metadata table.
This notification is sent whenever a new file is opened. The FdMtRTUpdateNotification object
provides the interface to the 'available telemetry' metadata table. This table contains start and stop
times of all contiguous telemetry data in the archive. The FdArPbkFile object is used to perform
I/O operations on the playback file received from EDOS.

The FdArEDOSPbkIF object is used to notify the playback merger that a playback file exists and
is ready to be merged. The FdLTScdoSend object is utilized to notify long-term storage that a com-
pleted hourly telemetry file is ready to be copied over to long-term storage.

3.11.4 DMS Telemetry Playback Merger Dynamic Model

3.11.4.1 Telemetry Playback Merger Scenario 1

3.11.4.1.1 Telemetry Playback Merger Scenario 1 Abstract

The Playback Merger scenario 1 describes the receipt of a complete (i.e. no sequence gaps) play-
back file from EDOS, the reading of this file and its merge into the existing archive. The scenario
also describes the merge activities of notifying the interested parties of the newly-created, com-
plete hourly telemetry files.

3.11.4.1.2 Telemetry Playback Merger Scenario 1 Summary Information

Interfaces:

EDOS

Analysis

SCDO

Stimulus:

Receipt of a playback file from EDOS.

Desired Response:

Seamless, merged archive of playback data with existing real-time and playback data.

Notification to Analysis that new hourly telemetry files are ready for statistics.

Notification to SCDO that new hourly telemetry files are ready for long-term storage.

Update metadata to accurately reflect all real-time and playback data currently in the
system and available for use.

Pre-Conditions:

Playback merger software has been initiated

Post-conditions:

3.11.4.1.3 Telemetry Playback Merger Scenario 1 Description

The playback merger receives notification from EDOS that a playback file has been sent over and
is ready for processing. The playback merger then instantiates two FdArHourlyTlmFile objects.
The first instance is for a temporary hourly file which will eventually contain all of the merged da-
ta. The second instance is for the hourly file whose time corresponds with the start time of the play-
back file data. The existing hourly file is opened and its playback contents are first copied into the
temporary hourly file.

3-134 305-CD-049-001

FdArPbkMerger

FdArPbkFile

FdArEDOSPbkIF

FdArHourlyTlmFile

FaAnaArchProxy

FdMtUpdateNotification

FdMtRTUpdateNotification
FdArSAU

FdArHeader FdArUserData

retrieveData()
convertTime()

FdLTScdoSend

myFilename
myLocation

send()
receive()

send(myFilename,myLocation)
receive()

myLength
myScid
myDataTypeid
myTime
myDataSource
myQuality

run()
init()

myFilename
myLocation

close()
write()
read()
open()

myFilename
myLocation

Close()
Write()
Read()
Open()

myFilename
myAction
myTime

receive()
send()
setAction(int)
setTime(time)
setFilename(char[36])

mySeqCount
myPrevSeqCount
myRTStartTime
myRTStopTime

Store()
Build()
setRTStartTime(time)
setRTStopTime(time)
getRTStartTime()
getRTStopTime()
checkSeqCount()
getPrevSeqCount()
getSeqCount()
setPrevSeqCount(int)
setSeqCount(int)

myDataForm
myScid
myDataType
myStopTime
myStartTime

setStartTime(time)
setStopTime(time)
setDataType(int)
setScid(int)
setDataForm(int)
receive()
send()

send(DataType,Location,Filename)

receives

builds

sends

sends

sends

builds

reads

getsTimeFrom

sends

 + : int
 + : time

 - : char[36]
 - : char[36]

 + : int
 + : int

 + : int
 + : int

 - : int
 - : int
 - : int
 - : time
 - : int
 - : int

 + : int
 + : int

 - : char[36]
 - : char[36]

 + : int
 + : int
 + : int
 + : int

 - : char[36]
 - : char[36]

 + : int
 + : int
 + : int
 + : int

 - : char[36]
 - : int
 - : time

 + : int
 + : int
 + : void
 + : void
 + : void

 - : int
 - : int
 - : time
 - : time

 + : int
 + : int
 + : void
 + : void
 + : time
 + : time
 + : int
 + : int
 + : int
 + : void
 + : void

 - : int
 - : int
 - : int
 - : time
 - : time

 + : void
 + : void
 + : void
 + : void
 + : void
 + : int
 + : int

 + : int

1+

1+

1+

1+

1,2

1+

1+

1+

Figure 3.11-2. DMS Telemetry Playback Merger Object Model

3-135
305-C

D
-049-001

FdArPbkMerger

DMS Processing of Contiguous Playback File

FoArAnaIFFdArSAUFdArPbkFileFdArEDOSPbkIF FdLTScdoSendFdMtUpdateNotification FdMtRTUpdateNotification
FdArHourlyTlmFile

(temporary)
FdArHourlyTlmFile

(existing)

Receives
playback

notification

Sends hourly file to long-term storage

Builds SAU

Sends Analysis notification

Sends metadata update

Sends RT/PBK metadata update

Loads existing
playback SAUs

Stores SAU

Get EDU from playback file

Status

Figure 3.11-3. DMS Telemetry Playback Merger Scenario 1 Event Trace

3-136 305-CD-049-001

The playback merger instantiates an FdArPbkFile object to access the playback file. The EDUs
are read from the playback file and the playback merger instantiates an FdArSAU object to build
the playback Standard Archive Units. The sequence counters are checked, as is the spacecraft time,
to ensure that the playback data has no gaps and that the times are correct. As each hour of data is
merged, the temporary telemetry file supersedes the existing hourly file. This processing is repeat-
ed for each EDU in the playback file.

As each hour is completed, the playback merger uses an instance of FoArAnaIF to notify Analysis
that an existing hourly file is ready for statistics generation. Telemetry file metadata is also updat-
ed using an instance of FdMtUpdateNotification and FdMtRTUpdateNotification (for real-time/
playback availability). Finally, the playback merger notifies SCDO of the hourly file via an in-
stance of the FdLTScdoSend class.

3.11.4.2 Telemetry Playback Merger Scenario 2

3.11.4.2.1 Telemetry Playback Merger Scenario 2 Abstract

The Playback Merger scenario 2 describes the receipt of a playback file from EDOS which con-
tains a sequence gap, the reading of this file and its merge into the existing archive. The scenario
also describes the merge activities of notifying the interested parties of the newly-created, com-
plete hourly telemetry files.

3.11.4.2.2 Telemetry Playback Merger Scenario 2 Summary Information

Interfaces:

EDOS

Analysis

SCDO

Stimulus:

Receipt of a playback file from EDOS.

Desired Response:

Seamless, merged archive of playback data with existing real-time and playback data.

Notification to Analysis that new hourly telemetry files are ready for statistics.

Notification to SCDO that new hourly telemetry files are ready for long-term storage.

Update metadata to accurately reflect all real-time and playback data currently in the
system and available for use.

Pre-Conditions:

Playback merger software has been initiated

Post-conditions:

3-137
305-C

D
-049-001

FdArPbkMerger

DMS Processing of Playback File with Sequence Gap

FoArAnaIFFdArSAUFdArPbkFileFdArEDOSPbkIF FdLTScdoSendFdMtUpdateNotification FdMtRTUpdateNotification
FdArHourlyTlmFile

(temporary)
FdArHourlyTlmFile

(existing)

Receives
playback

notification

Sends hourly file to long-term storage

Builds SAU

Sends Analysis notification

Sends metadata update

Sends RT/PBK metadata update

Loads existing
playback SAUs

Stores SAU

Get EDU from playback file

Status

Get missing SAU
from existing file

Figure 3.11-4. DMS Telemetry Playback Merger Scenario 2 Event Trace

3-138 305-CD-049-001

3.11.4.2.3 Telemetry Playback Merger Scenario 2 Description

The playback merger receives notification from EDOS that a playback file has been sent over and
is ready for processing. The playback merger instantiates two FdArHourlyTlmFile objects. The
first instance is for a temporary hourly file which will eventually contain all of the merged data.
The second instance is for the hourly file whose time corresponds with the start time of the play-
back file data. The existing hourly file is opened and its playback contents are first copied into the
temporary hourly file.

The playback merger instantiates an FdArPbkFile object to access the playback file. The EDUs
are read from the file and the playback merger instantiates an FdArSAU object to build the play-
back Standard Archive Units. The sequence counter check indicates a sequence gap (the playback
file is missing one or more EDUs). At this point, the appropriate, existing hourly file is opened
and is searched for the missing EDU(s). In this scenario, the missing EDU(s) are located and stored
to the temporary file from the existing hourly file. When the gap has been filled, processing con-
tinues as before.

As each hour is completed, the playback merger uses an instance of FoArAnaIF to notify Analysis
that an existing hourly file is ready for statistics generation. Telemetry file metadata is also updat-
ed using an instance of FdMtUpdateNotification and FdMtRTUpdateNotification (for real-time/
playback availability). Finally, the playback merger notifies SCDO of the hourly file via an in-
stance of the FdLTScdoSend class.

3.11.5 DMS Telemetry Playback Merger Data Dictionary

FdArEDOSPbkIF

class FdArEDOSPbkIF

This class contains the interface between EDOS & the playback merger task.

Public Construction

FdArEDOSPbkIF()

This function is the default constructor for the class

~FdArEDOSPbkIF()

This function is the default destructor for the class

Public Functions

int receive()

This function receives notification from EDOS

int send()

This function sends notification to the merger.

3-139 305-CD-049-001

Private Data

char myFilename[36]

This member variable contains the playback file name

char myLocation[36]

This member variable contains the playback file location

FdArHeader

class FdArHeader

This class contains the SAU header information

Public Construction

FdArHeader()

This is the default constructor for the class

~FdArHeader()

This is the default destructor for the class

Private Data

int myDataSource

This member contains the data source

int myDataTypeid

This member contains the data type

int myLength

This member contains the data length

int myQuality

This member contains the data quality

int myScid

This member contains the spacecraft ID

time myTime

This member contains the time stamp

FdArHourlyTlmFile

class FdArHourlyTlmFile

This class contains the hourly telemetry file

3-140 305-CD-049-001

Public Construction

FdArHourlyTlmFile()

This is the default constructor for the class

~FdArHourlyTlmFile()

This is the default destructor for the class

Public Functions

int Close(void)

This function closes the hourly tlm file

int Open(void)

This function opens the hourly tlm file

int Read(void)

This function reads the hourly tlm file

int Write(void)

This function writes to the hourly tlm file

Private Data

char myFilename[36]

This member variable contains the tlm file name

FdArPbkFile

class FdArPbkFile

This class contains the playback file

Public Construction

FdArPbkFile()

This function is the default constructor for the class

~FdArPbkFile()

FdArPbkFile

This function is the default destructor for the class

Public Functions

int close()

This function closes the playback file

int open()

This function opens the playback file

3-141 305-CD-049-001

int read()

This function reads the playback file

int write()

This function writes to the playback file

Private Data

char myFilename[36]

This member variable contains the playback file name

char myLocation[36]

This member variable contains the playback file location

FdArPbkMerger

class FdArPbkMerger

This class represents the playback merger task

Public Construction

FdArPbkMerger()

This is the default constructor for the class

~FdArPbkMerger()

This is the default destructor for the class

Public Functions

int init()

This function initializes the playback merger

int run()

This function runs the playback merger

FdArSAU

class FdArSAU

This class contains the Standard Archive Unit for the telemetry archiver, retriever, & playback
merger

Public Construction

FdArSAU(listenAddr)

This is the default constructor for the class

~FdArSAU()

This is the default destructor for the class

3-142 305-CD-049-001

Public Functions

int Build(void)

This function builds the SAU

int Store(void)

This function stores the SAU

int checkSeqCount()

This function validates the sequence count

int getPrevSeqCount()

This function retrieves the previous seq count

time getRTStartTime()

This function retrieves the stream start time

time getRTStopTime()

This function retrieves the stream stop time

int getSeqCount()

This function retrieves the sequence count

void setPrevSeqCount(int)

This function sets the previous sequence counter

void setRTStartTime(time)

This function sets the stream start time

void setRTStopTime(time)

This function sets the stream stop time

void setSeqCount(int)

This function sets the sequence count

Private Data

int myPrevSeqCount

This member variable contains the previous sequence count

time myRTStartTime

This member variable contains the stream start time

time myRTStopTime

This member variable contains the stream stop time

int mySeqCount

This member variable contains the current sequence count

3-143 305-CD-049-001

FdArUserData

class FdArUserData

This class contains the EDU data

Public Construction

FdArUserData()

This function is the default constructor

~FdArUserData()

This function is the default destructor

Public Functions

time convertTime()

This function converts the time in the EDU to the desired format

int retrieveData()

This function retrieves the EDU

FdLTScdoSend

class FdLTScdoSend

This class represents the interface between the playback merger and SCDO

Public Construction

FdLTScdoSend()

This is the default constructor for the class

~FdLTScdoSend()

This is the default destructor for the class

Public Functions

int send(void)

This class sends notification to SCDO

Private Data

int myDataType

This member contains the data type of the file

char myFilename[36]

This member contains the name of the file

char myLocation[36]

This member contains the location of the file

3-144 305-CD-049-001

FdMtRTUpdateNotification

class FdMtRTUpdateNotification

This class contains the interface between the playback merger and the RT/PBK metadata

Public Construction

FdMtRTUpdateNotification()

This is the default constructor for the class

~FdMtRTUpdateNotification()

This is the default destructor for the class

Public Functions

int receive()

This function receives the notification

int send()

This function sends the notification

void setDataForm(int)

This function sets the Dataform attribute

void setDataType(int)

This function sets the DataType attribute

void setScid(int)

This function sets the Scid attribute

void setStartTime(time)

This function sets the StartTime attribute

void setStopTime(time)

This function sets the StopTime attribute

Private Data

int myDataForm

This member variable contains the stream form (RT vs PBK)

int myDataType

This member variable contains the stream data type

int myScid

This member variable contains the stream SC id

time myStartTime

This member variable contains the stream start time

3-145 305-CD-049-001

time myStopTime

This member variable contains the stream stop time

FdMtUpdateNotification

class FdMtUpdateNotification

This class contains the interface between the playback merger and the DMS metadata

Public Construction

FdMtUpdateNotification()

This is the default constructor for the class

~FdMtUpdateNotification()

This is the default constructor for the class

Public Functions

int receive()

This function receives the notification

int send()

This function sends the notification

void setAction(int)

This function sets the Action attribute

void setFilename(char)

This function sets the Filename attribute

void setTime(time)

This function sets the Time attribute

Private Data

int myAction

This member contains the requested action

char myFilename[36]

This member contains the filename for metadata

time myTime

This member contains the Time

FoArAnaIF

class FoArAnaIF

This class contains the interface between Analysis and the playback merger

3-146 305-CD-049-001

Public Construction

FoArAnaIF()

This is the default constructor for the class

~FoArAnaIF()

FoArAnaIF

This is the default destructor for the class

Public Functions

int receive()

This function receives the notification

int send()

This function sends the notification to Analysis

Private Data

char myFilename[36]

This member variable contains the tlm file name

char myLocation[36]

This member variable contains the tlm file location

3.12 DMS Telemetry Retrieval
The DMS Telemetry Retrieval process is a persistent process responsible for accepting user replay
requests (Shared, Dedicated, or Analysis requests) and serving the data to the appropriate Analysis
and Telemetry processes required to process the replay data. The user specifies the various param-
eters surrounding the replay request and the telemetry retrieval process ensures that the requested
data is retrieved (either locally or from long-term storage) and served. The telemetry retrieval pro-
cess places the user requests in a queue and maintains this queue over the life of the process while
providing users with the ability to look into the queue and view the status of their respective re-
quests.

3.12.1 DMS Telemetry Retrieval Context

The DMS Telemetry Retrieval interfaces are described below and displayed in the context dia-
gram.

Long-term Storage:

Receives a request from the telemetry retrieval process that one or more requested telemetry
files need to be transferred from long-term to local storage.

Sends files and notification once all requested files have been sent over.

3-147 305-CD-049-001

Analysis:

The Analysis request manager receives the analysis request from the telemetry retrieval request
queue manager. The request manager sends replay status back to the request queue
manager.

The Analysis cruncher sends a request for EDUs to the Data Retriever

The Analysis cruncher receives EDUs from the Data Retriever.

Telemetry:

Receives telemetry EDUs.

FUI:

Sends user replay requests to the request queue manager.

Sends requests for the status of previously submitted replay requests.

Receives status on previously submitted replay requests.

Sends start/pause/step requests to the Data Retriever(s).

3-148
305-C

D
-049-001

Request
Manager FUI

Telemetry

AnalysisLong-term
Storage

DMS Telemetry
Retrieval/Replay

This System

Telemetry EDUs

Status

Replay/Analysis
Requests

Replay/Analysis
Requests

Status

Archive File
Request

Archived Tlm Files

Telemetry EDUs

Telemetry EDU Request

Status Requests

Intermediate Status

Figure 3.12-1. DMS Telmetry Retrieval Context Diagram

3-149 305-CD-049-001

3.12.2 DMS Telemetry Retrieval Interfaces

Note: Above table is subject to change.

Table 3.12-1. DMS Telemetry Retrieval Interfaces

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Send request
info to DMS

FaRpFUIToQueu
eProxy

Provide interface between
FUI & DMS

DMS FUI Frequently

FdRqReplayRequ
est

Specific request information

Send request
status info to
FUI

FaRpQueueToFU
IProxy

Provide interface between
DMS & FUI

FUI DMS Frequently

FoDsReplayStatu
s

Status of the replay request

FoDsReplayString String information of the
replay request

Send request
status to FUI

FaRpAnalysisStat
us

Provide analysis request
status info to FUI

FUI DMS Frequently

Send analysis
request to the
request
manager

FaRpQueueToRe
qMgrProxy

Provide interface between
DMS and the request
manager for analysis requests

ANA DMS Frequently

FdRqReplayRequ
est

Specific request information

Send
messages and
status from the
request mgr to
DMS

FaRpReqMgrToQ
ueueProxy

Provide interface between
request manager & DMS

DMS ANA Frequently

FoDsReplayStatu
s

Status of the replay request

FoDsReplayString String information of the
replay request

Allow FUI to
control replay
data flow

FdRqFUIToDataR
etrieverProxy

Provide interface between
FUI and DMS data retriever

DMS FUI Frequently

Allow
Analysis to
control
analysis
request data
flow

FdRpReqMgrToD
RProxy

Provide interface between
analysis cruncher and DMS
data retriever

DMS FUI Frequently

3-150 305-CD-049-001

3.12.3 DMS Telemetry Retrieval Object Model

The FoDsRequestQueueMgr object queues up, submits, and monitors all user replay requests
(Shared, Dedicated, Analysis). FoDsRequestQueueMgr uses the FaRpFUIToQueueProxy to re-
ceive incoming requests (contained in the FdRqReplayRequest object). The FoDsRequest-
QueueMgr.dbLookup function is called to partition the request by its separate database
components (if the request crosses over a database boundary). For analysis requests, the findSta-
tion function is then invoked in order to determine upon which machine to execute the request.
Once this information is determined then the request queue, FoDsRequestQueue, is updated to in-
clude this new request. FoDsRequestQueueMgr also checks to see if the requested telemetry files
are located at long-term storage. If so, then FdLTScdoRetrieve is used to retrieve those files from
SCDO.

For analysis requests and dedicated replay requests, the request information is then passed via FaR-
pQueueToReqMgrProxy to the FaAnRequestMgr on the selected machine. FaAnRequestMgr will
then initiate FoDsDataRetriever on the user station to serve the telemetry data. For shared replay
requests, FoDsRequestQueueMgr initiates the FoDsDataRetriever process on the Data Server.

The initialization status of analysis and dedicated replays requests is contained in FoDsReplaySta-
tus and is sent back from FaAnRequestMgr to FoDsRequestQueueMgr via FaRpReqMgrTo-
QueueProxy. FoDsRequestQueueMgr determines the initialization status for shared replay
requests. FoDsRequestQueueMgr sends the status back to FUI via FaRpQueueToFUIProxy. If
the startup was successful, then FUI initiates the replay using FoRqFUIToDataRetrieverProxy.
This proxy allows FUI to start and stop the data flow from the Data Retriever. Once FoDsDataRe-
triever receives the start request from FUI, it begins reading the telemetry files using FdArHour-
lyTlmFile functions and building EDUs from the SAUs using FtDsEDU.build. The Data Retriever
then sends the EDUs to the appropriate destination address by invoking the sendTlmEDU member
function.

FUI can halt and restart the replay process using the FoRqFUIToDataRetrieverProxy, or it can can-
cel the replay via the FaRpFUIToQueueProxy. When the replay is canceled, then FoDsRequest-
QueueMgr forwards on the cancellation request to FaAnReqeuestMgr and deletes the request from
the queue by calling the deleteFromQueue function of FoDsRequestQueueMgr.

3-151
305-C

D
-049-001

FoDsRequestQueueMgr

FdRqReplayRequest

FoDsDataRetriever

FtDsEDU

send
receive

FdArHourlyTlmFile

build

FaAnRequestMgr

FdArSAU

FdLTScdoRetrieve

myFilename

FaRpAnalysisStatus

FaRpFUIToQueueProxy

FoDsDBTable

myLocation
myType

FoDsRequestQueue

FoRqFUIToDataRetrieverProxy

receive()
send(FdRqReplayRequest)

FoDsReplayStatus

myStatus
myReplayData

Container

FoDsReplayString

FaRpQueueToReqMgrProxy

receive()
send(FdRqReplayRequest)

FaRpReqMgrToQueueProxy

myStringId
myTlmpid
myDRpid
myStartTime
myStopTime

myRequestType
myRequestID
myReplayType
myStartTime
myStopTime
myPriority
myScid
myParamList
myRequestingProc
myDatabaseID

FaRpQueueToFUIProxy

send(FoDsReplayStatus)
receive()

send(Status)
receive()

myDestinationAddr

retrieveTlmSAU()
sendTlmEDU()

myFilename
myLocation

Close()
Write()
Read()
Open()

myStartTime
myDbid

myRequestID
myStartTime
myStopTime
myReplayRate
myRequestingProc
myPriority
myScid
myStation
myDatabaseID
myParamList
myStatus
myFileLocation
myStringID
myDRpid
myPrevPartition
myNextPartition

init()
run()
handleSharedReq()
handleAnaDedReq()
readQueue()
writeQueue()
deleteFromQueue()
updateQueue()
findStation(requestType)
dbLookup(startTime,stopTime)

myReplayRate

send(RequestType,startTime,stopTime)
receive()

send(MsgType,ReplayType,FoDsReplayStatus)
receive()

FdRpReqMgrToDRProxy

send

gets

myStatusProxy

builds

myFUIReplayControlProxy

initiates

myInitStatusProxy

reads

builds

 + : int
 + : int

 - : enum {Pending, Error, Active}
 - : Container* = EcCNull

{COTS implementation}

 + : int
 + : int

 - : EcTInt
 - : IpcAddr*
 - : IpcAddr*
 - : EcTTime
 - : EcTTime

 - : enum(Submit,Cancel,GetStatus)
 - : EcTInt
 - : enum(Shared,Dedicated,Analysis)
 - : EcTTime
 - : EcTTime
 - : EcTInt
 - : EcTInt
 - : file *
 - : EcTInt
 - : EcTInt

 + : EcTInt
 + : EcTInt

 + : int
 + : int

 - : int

 + : int
 + : int

 - : char[36]
 - : char[36]

 + : int
 + : int
 + : int
 + : int

 -
 -

 - : EcTInt
 - : EcTTime
 - : EcTTime
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : file *
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : IpcAddr*
 - : queue entry *
 - : queue entry *

 + : int
 + : int
 + : int
 + : int
 + : int
 + : int
 + : int
 + : int
 + : int
 + : FoDsDBTable *

 - : EcTInt

 + : int
 + : int

 + : int
 + : int

1+

1+

1+

Figure 3.12-2. DMS Telemetry Retrieval Object Model

3-152 305-CD-049-001

3.12.4 DMS Telemetry Retrieval Dynamic Model

3.12.4.1.1 Telemetry Retrieval/Replay Scenario 1 Abstract

The Telemetry Retrieval/Replay scenario 1 describes the processing of an Analysis request from
FUI.

3.12.4.1.2 Telemetry Retrieval/Replay Scenario 1 Summary Information

Interfaces:

FUI

Analysis

SCDO

RMS

Stimulus:

Receipt of an Analysis request from FUI.

Desired Response:

Initialize logical string components, enter request onto the queue, & serve the requested
data to the specified analysis process(es).

Upon completion of request, delete entry from the queue.

Pre-Conditions:

Request Queue manager software has been initiated.

Post-conditions:

3.12.4.1.3 Telemetry Retrieval Scenario 1 Description

The Request Queue Manager receives an analysis request from FUI. The Request Queue Manager
adds the request to the request queue. A quick look is taken to determine the location of the nec-
essary telemetry files. If one or more are located at long-term storage, then FdLTScdoRetrieve is
used to request the needed files. A status is returned from SCDO once the transfer is complete.
The request is then submitted to the Request Manager on an available user station. The Request
Manager creates an FoDsDataRetriever process (as well as an Analysis & Telemetry process). The
status of the initialization is then determined by the Request Manager. This status is sent to the
Request Queue Manager, who updates the appropriate entry in the request queue and returns the
status information to FUI.

If the initialization was successful, then FUI sends a start request to the appropriate FoDsDataRe-
triever process. The Data Retriever then begins reading the telemetry files and serving the EDUs
to the Analysis cruncher process. When the replay is complete, the Request Manager sends the
completion status back to the Request Queue Manager. The Request Queue Manager passes the
completion status to FUI and then deletes the entry from the request queue.

3-153
305-C

D
-049-001

FoDsDataRetriever FdLTScdoRetrieve FdArHourlyTlmFileFoDsRequestQueueFdRqReplayRequestFoDsRequestQueueMgr

Analysis Request Scenario

Request Mgr/
RMS AnaFoDsReplayStatusFUI

build replay request

adds request to queue

submits request

instantiates

request telemetry files

status

access tlm files

send data to analysis cruncher

send status
to FUI

send start request

build replay initialization status

update request status

send replay status

send completion status
send completion

status

build replay complete status

send replay
request

instantiates

delete request from queue

Figure 3.12-3. DMS Telemetry Retrieval Scenario 1 Event Trace

3-154 305-CD-049-001

3.12.4.2.1 Telemetry Retrieval/Replay Scenario 2 Abstract

The Telemetry Retrieval/Replay scenario 2 describes the processing of a Dedicated replay request
from FUI.

3.12.4.2.2 Telemetry Retrieval/Replay Scenario 2 Summary Information

Interfaces:

FUI

Analysis

TLM

SCDO

RMS

Stimulus:

Receipt of a Dedicated replay request from FUI.

Desired Response:

Initialize logical string components, enter request onto the queue, & serve the requested
data to the specified telemetry process.

Upon completion of request, delete entry from the queue.

Pre-Conditions:

Request Queue manager software has been initiated.

Post-conditions:

3.12.4.2.3 Telemetry Retrieval/Replay Scenario 2 Description

The request queue manager receives a dedicated replay request from FUI. The Request Queue
Manager adds the request to the request queue. A quick look is taken to determine the location of
the necessary telemetry files. If one or more are located at long-term storage, then FdLTSc-
doRetrieve is used to request the needed files. A status is returned from SCDO once the transfer
is complete. The request is then submitted to the Request Manager on an available user station.
The Request Manager creates an FoDsDataRetriever process and a Telemetry process. The status
of the initialization is then determined by the Request Manager. This status is sent to FoDsRe-
questQueueMgr, who updates the appropriate entry in the request queue and returns the request
status information to FUI.

If the initialization was successful, then FUI sends a start request to the appropriate FoDsDataRe-
triever process. The Data Retriever then begins reading the telemetry files and serving the EDUs
to the Telemetry process. When the replay is complete, the Request Manager sends the completion
status back to the Request Queue Manager. The Request Queue Manager passes the completion
status to FUI and FUI then issues a cancel request to the FoDsRequestQueueMgr. FoDsRequest-
QueueMgr sends the request on to the Request Manager so that the Request Manager can clean up.
FoDsReqeustQueueMgr then deletes the request from the request queue.

3-155
305-C

D
-049-001

FoDsDataRetriever FdLTScdoRetrieve FdArHourlyTlmFileFoDsRequestQueueFdRqReplayRequestFoDsRequestQueueMgr

Dedicated Replay Request Scenario

Request Mgr TlmFUI
build replay request

adds request to queue

submits request

instantiates

request telemetry files

status

access tlm files

send data to Tlm

send status
to FUI

send start request

update request status

send replay initialization status

send 'delete replay' status

send completion
status

instantiates

send replay
request

send cancel
request

send cancel request

delete request from queue

Figure 3.12-4. DMS Telemetry Retrieval Scenario 2 Event Trace

3-156 305-CD-049-001

3.12.4.3.1 Telemetry Retrieval/Replay Scenario 3 Abstract

The Telemetry Retrieval/Replay scenario 3 describes the processing of a Shared replay request
from FUI.

3.12.4.3.2 Telemetry Retrieval/Replay Scenario 3 Summary Information

Interfaces:

FUI

Analysis

TLM

SCDO

Stimulus:

Receipt of a Shared replay request from FUI.

Desired Response:

Initialize logical string components, enter request onto the queue, & multicast the requested
data to whomever is listening.

Upon completion of request, delete entry from the queue.

Pre-Conditions:

Request Queue manager software has been initiated.

Post-conditions:

3.12.4.3.3 Telemetry Retrieval/Replay Scenario 3 Description

The Request Queue Manager receives a shared replay request from FUI. The Request Queue Man-
ager adds the request to the request queue. A quick look is taken to determine the location of the
necessary telemetry files. If one or more are located at long-term storage, then FdLTScdoRetrieve
is used to request the needed files. A status is returned from SCDO once the transfer is complete.
The Request Queue Manager then creates a Data Retriever process on the Data Server which will
multicast out the requested telemetry data. The request is then submitted to a Request Manager on
an available user station. The Request Manager then initializes the necessary components. The
status of this initialization is determined by the Request Manager and sent to the Request Queue
Manager. FoDsRequestQueueMgr updates the appropriate entry in the request queue and returns
the request status information to FUI.

If the initialization was successful, then FUI sends a start request to the appropriate FoDsDataRe-
triever process. The Data Retriever then begins reading the telemetry files and multicasting the
EDUs to any listening Telemetry process. When the replay is complete, the Request Manager
sends the completion status back to the Request Queue

3-157
305-C

D
-049-001

FoDsDataRetriever FdLTScdoRetrieve
FdArHourlyTlmFileFoDsRequestQueueFdRqReplayRequestFoDsRequestQueueMgr

Shared Replay Request Scenario

Multicast
AddressFUI

build replay request

adds request to queue

instantiates

request telemetry files

status

access tlm files

multicast data

send status
to FUI

send start request

update request status

send completion status
send completion

status

send replay
request

send cancel
request

send cancel request

delete entry from queue

status

Figure 3.12-5. DMS Telemetry Retrieval Scenario 3 Event Trace

3-158 305-CD-049-001

Manager. The Request Queue Manager passes the completion status to FUI and FUI then issues a
cancel request to the FoDsRequestQueueMgr. FoDsRequestQueueMgr sends the request on to the
Request Manager so that the Request Manager can clean up. FoDsReqeustQueueMgr then deletes
the request from the request queue.

3.12.5 DMS Telemetry Retrieval Data Dictionary

FaRpFUIToQueueProxy

class FaRpFUIToQueueProxy

This class contains the proxy between FUI and the Request Queue Manager

Public Construction

FaRpFUIToQueueProxy()

This function is the default constructor for the class

~FaRpFUIToQueueProxy()

This function is the default constructor for the class

Public Functions

int receive()

This function receives the request

int send(FdRqReplayRequest)

This function sends the request

FaRpReqMgrToQueueProxy

class FaRpReqMgrToQueueProxy

This class represents the proxy between the queue manager and the request manager

Public Construction

FaRpReqMgrToQueueProxy()

This is the default constructor for the class

~FaRpReqMgrToQueueProxy()

This is the default constructor for the class

Public Functions

int receive()

This function receives the messages from the request manager

int send(MsgType, ReplayType, FoDsReplayStatus)

This function sends the request status to the request manager. The MsgType can be either:
1) Replay Status, 2) ReqMgr registering, or 3) ReqMgr unregistering with the queue mgr.

3-159 305-CD-049-001

The ReplayType parameter is really needed only if the MsgType is 2 or 3.

FaRqDbidLookupProxy

class FaRqDbidLookupProxy

This class represents the interface to DMS' DB lookup tool

Public Construction

FaRqDbidLookupProxy()

This is the default constructor for the class

~FaRqDbidLookupProxy()

This is the default destructor for the class

Public Functions

void receive()

This function receives the request

int send(StartTime, StopTime, Scid)

This function sends the request to DMS

FdArHourlyTlmFile

class FdArHourlyTlmFile

This class contains the hourly telemetry file

Public Construction

FdArHourlyTlmFile()

This is the default constructor for the class

~FdArHourlyTlmFile()

This is the default destructor for the class

Public Functions

int Close(void)

This function closes the hourly tlm file

int Open(void)

This function opens the hourly tlm file

int Read(void)

This function reads the hourly tlm file

int Write(void)

This function writes to the hourly tlm file

3-160 305-CD-049-001

Private Data

char myFilename[36]

This member variable contains the tlm file name

FdRqReplayRequest

class FdRqReplayRequest

This class represents the information to be passed from FUI to the request queue manager as
part of a replay request. This class of data will come over in the FaRpFUIToQueueProxy.

Public Construction

FdRqReplayRequest()

This is the default constructor for the class

~FdRqReplayRequest()

This is the default destructor for the class

Private Functions

enum(Shared, Dedicated, Analysis)

This member variable contains the type of replay being requested (Shared, Dedicated,
Analysis)

enum(Submit, Cancel, GetStatus)

This member variable contains the request type (Submit request, Cancel request, Get re-
quest status)

Private Data

EcTInt myDatabaseID

This member variable contains request database

file* myParamList

This member variable contains the request parameter list

EcTInt myPriority

This member variable contains the request priority

EcTInt myReplayRate

This member variable contains the replay rate

EcTInt myRequestID

This member variable contains the request ID

EcTInt myRequestingProc

This member variable contains the ID of the requesting FUI

3-161 305-CD-049-001

EcTInt myScid

This member variable contains the request SCID

EcTTime myStartTime

This member variable contains the request start time

EcTTime myStopTime

This member variable contains the request stop time

FoDsDataRetriever

class FoDsDataRetriever

This class contains the Data Retriever which will retrieve requested telemetry data from the ar-
chive.

Public Construction

FoDsDataRetriever()

This function is the default constructor for the class

~FoDsDataRetriever()

This function is the default constructor for the class

Public Functions

int retrieveTlmSAU()

This function retrieves the next SAU from the archive

int sendTlmEDU()

This function sends the EDU to the Destination address

Private Data

int myDestinationAddr

This member variable contains the EDU's destination address

int myReplayRate

This member variable contains the replay rate

FoDsRequestQueue

class FoDsRequestQueue

This class represents the queue of all requests made to DMS

Public Construction

FoDsRequestQueue()

This is the default constructor for the class

3-162 305-CD-049-001

~FoDsRequestQueue()

This is the default destructor for the class

Private Data

queue entry

This member variable contains the queue entry of the next portion of the the replay request

queue entry

This member variable contains the queue entry of the previous portion of the request (re-
play requests may be partitioned based on DB crossovers)

IpcAddr* myDRpid

This member variable contains the process ID of the Data Retriever which is serving the
telemetry

EcTInt myDatabaseID

This member variable contains the request DB id

EcTInt myFileLocation

This member variable contains the location of the requested data files

file* myParamList

This member variable contains the request parameter list

EcTInt myPriority

This member variable contains the request priority

EcTInt myReplayRate

This member variable contains the request replay rate

EcTInt myRequestID

This member variable contains the request ID

EcTInt myRequestingProc

This member variable contains the requesting FUI id

EcTInt myScid

This member variable contains the request SCID

EcTTime myStartTime

This member variable contains request start time

EctInt myStation

This member variable contains the station upon which the request is being executed (Anal-
ysis requests)

EcTInt myStatus

This member variable contains the request status

3-163 305-CD-049-001

EcTTime myStopTime

This member variable contains the request stop time

EcTInt myStringID

This member variable contains the ID of the replay string

FoDsRequestQueueMgr

class FoDsRequestQueueMgr

This class represents the request queue manager task

Public Construction

FoDsRequestQueueMgr()

This is the default constructor for the class

~FoDsRequestQueueMgr()

This is the default destructor for the class

Public Functions

FoDsDBTable* dbLookup(startTime, stopTime)

This function determines the DB id(s) required to perform the requested replay.

int deleteFromQueue()

This function deletes from the request queue

int findStation(requestType)

This function finds a user station which is available to perform the requested processing.

int handleAnaDedReq()

This function handles analysis & dedicated requests

int handleSharedReq()

This function handles shared replay requests

int init()

This function initializes the request queue mgr

int readQueue()

This function reads the request queue

int run()

This executes the request queue manager task

int updateQueue()

This function updates the request queue

3-164 305-CD-049-001

int writeQueue()

This function writes to the request queue

FoRqFUIToDataRetrieverProxy

class FoRqFUIToDataRetrieverProxy

This class represents the interface between FUI and the Data Retriever

Public Construction

FoRqFUIToDataRetrieverProxy()

This is the default constructor for the class

~FoRqFUIToDataRetrieverProxy()

This is the default destructor for the class

Public Functions

int receive()

This function receives the request

int send(RequestType, startTime, stopTime)

This function sends the request to the Data Retriever

AB-1 305-CD-049-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-2 305-CD-049-001

CRC Cyclic Redundancy Code

CSCI Computer software configuration item

CSMS Communications and Systems Management Segment

CSS Communications Subsystem (CSMS)

CSTOL Customer System Test and Operations Language

CTIU Command and Telemetry Interface Unit (AM-1)

DAAC Distributed Active Archive Center

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DAT Digital Audio Tape

DB Data Base

DBA Database Administrator

DBMS Database Management System

DCE Distributed Computing Environment

DCP Default Configuration Procedure

DEC Digital Equipment Corporation

DES Data Encryption Standard

DFCD Data Format Control Document

DID Data Item Description

DMS Data Management Subsystem

DOD Digital Optical Data

DoD Department of Defense

DS Data Server

DSN Deep Space Network

DSS Decision Support System

e-mail electronic mail

Ecom EOS Communication

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EGS EOS Ground System

EOC Earth Observation Center (Japan);
EOS Operations Center (ECS)

EOD Entering Orbital Day

EON Entering Orbital Night

EOS Earth Observing System

AB-3 305-CD-049-001

EOSDIS EOS Data and Information System

EPS Encapsulated Postscript

ESH EDOS Service Header

ESN EOSDIS Science Network

ETS EOS Test System

EU Engineering Unit

EUVE Extreme Ultra Violet Explorer

FAS FOS Analysis Subsystem

FAST Fast Auroral Snapshot Explorer

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FDIR Fault Detection and Isolation Recovery

FDM FOS Data Management Subsystem

FMEA Failure Modes and Effects Analyses

FOP Frame Operations Procedure

FORMATS FDF Orbital and Mission Aids Transformation System

FOS Flight Operations Segment

FOT Flight Operations Team

FOV Field-Of-View

FPS Fast Packet Switch

FRM FOS Resource Management Subsystem

FSE FOT S/C Evolutions

FTL FOS Telemetry Subsystem

FUI FOS User Interface

GB Gigabytes

GCM Global Circulation Model

GCMR Global Circulation Model Request

GIMTACS GOES I-M Telemetry and Command System

GMT Greenwich Mean Time

GN Ground Network

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

GUI Graphical User Interface

H&S Health and Safety

H/K Housekeeking

HST Hubble Space Telescope

AB-4 305-CD-049-001

I/F Interface

I/O Input/Output

ICC Instrument Control Center

ICD Interface Control Document

ID Identifier

IDB Instrument Database

IDR Incremental Design Review

IEEE Institute of Electrical and Electronics Engineers

IOT Instrument Operations Team

IP International Partners

IP-ICC International Partners-Instrument Control Center

IPs International Partners

IRD Interface requirements document

ISDN Integrated Systems Digital Network

ISOLAN Isolated Local Area Network

ISR Input Schedule Request

IST Instrument Support Terminal

IST Instrument Support Toolkit

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

Kbps Kilobits per second

LAN Local Area Network

LaRC Langley Research Center

LASP Laboratory for Atmospheric Studies Project

LEO Low Earth Orbit

LOS Loss of Signal

LSM Local System Manager

LTIP Long-Term Instrument Plan

LTSP Long-Term Science Plan

MAC Medium Access Control;
Message Authentication Code

MB Megabytes

MBONE Multicast Backbone

Mbps Megabits per second

MDT Mean Down Time

MIB Management Information Base

AB-5 305-CD-049-001

MISR Multi-angle Imaging Spectro-Radiometer

MMM Minimum, Maximum, and Mean

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate resolution Imaging Spectrometer

MOPITT Measurements Of Pollution In The Troposphere

MSS Management Subsystem

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCAR National Center for Atmospheric Research

NCC Network Control Center

NEC North Equator Crossing

NFS Network File System

NOAA National Oceanic and Atmospheric Administration

NSI NASA Science Internet

NTT Nippon Telephone and Telegraph

OASIS Operations and Science Instrument Support

ODB Operational Database

ODM Operational Data Message

OMT Object Model Technique

OO Object Oriented

OOD Object Oriented Design

OpLAN Operational LAN

OSI Open System Interconnect

PACS Polar Acquisition and Command System

PAS Planning and Scheduling

PDB Project Data Base

PDF Publisher's Display Format

PDL Program Design Language

PDR Preliminary Design Review

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Parameter ID

PIN Password Identification Number

POLAR Polar Plasma Laboratory

AB-6 305-CD-049-001

POP Polar-Orbiting Platform

POSIX Portable Operating System for Computing Environments

PSAT Predicted Site Acquisition Table

PSTOL PORTS System Test and Operation Language

Q/L Quick Look

R/T Real-Time

RAID Redundant Array of Inexpensive Disks

RCM Real-Time Contact Management

RDBMS Relational Database Management System

RMA Reliability, Maintainability, Availability

RMON Remote Monitoring

RMS Resource Management Subsystem

RPC Remote Processing Computer

RTCS Relative Time Command Sequence

RTS Relative Time Sequence;
Real-Time Server

S/C Spacecraft

SAR Schedule Add Requests

SCC Spacecraft Controls Computer

SCF Science Computing Facility

SCL Spacecraft Command Language

SDF Software Development Facility

SDPS Science Data Processing Segment

SDVF Software Development and Validation Facility

SEAS Systems, Engineering, and Analysis Support

SEC South Equator Crossing

SLAN Support LAN

SMA S-band Multiple Access

SMC Service Management Center

SN Space Network

SNMP System Network Mgt Protocol

SQL Structured Query Language

SSA S-band Single Access

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

AB-7 305-CD-049-001

T&C Telemetry and Command

TAE Transportable Applications Environment

TBD To Be Determined

TBR To Be Replaced/Resolved/Reviewed

TCP Transmission Control Protocol

TD Target Day

TDM Time Division Multiplex

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TIROS Television Infrared Operational Satellite

TL Team Leader

TLM Telemetry subsystem

TMON Telemetry Monitor

TOO Target Of Opportunity

TOPEX Topography Ocean Experiment

TPOCC Transportable Payload Operations Control Center

TRMM Tropical Rainfall Measuring Mission

TRUST TDRSS Resource User Support Terminal

TSS TDRSS Service Session

TSTOL TRMM System Test and Operations Language

TW Target Week

U.S. United States

UAV User Antenna View

UI User Interface

UPS User Planning System

US User Station

UTC Universal Time Code;
Universal Time Coordinated

VAX Virtual Extended Address

VMS Virtual Memory System

W/S Workstation

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

XTE X-Ray Timing Explorer

AB-8 305-CD-049-001

This page intentionally left blank.

GL-1 305-CD-049-001

Glossary

 GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined start
date, takes a specific amount of time to complete, and comprises
definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

attitude data Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

• Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
quaternions, rates and biases, and associated parameters.

• Attitude generated onboard in quaternion or Euler angle form.

• Refined and routine production data related to the accuracy or
knowledge of the attitude.

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures divided
by the sum of the mean time between failures and the mean down
time [before restoration of function].

GL-2 305-CD-049-001

availability
(inherent) (Ai)

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive action,
a system will operate satisfactorily at any time. The “ideal
support environment” referred to, exists when the stipulated
tools, parts, skilled work force manuals, support equipment and
other support items required are available. Inherent availability
excludes whatever ready time, preventive maintenance
downtime, supply downtime and administrative downtime may
require. Ai can be expressed by the following formula:

 Ai = MTBF/ (MTBF + MTTR)

Where:MTBF = Mean Time Between Failures

MTTR = Mean Time To Repair

availability
(operational)
(Ao)

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ao can be expressed by
the following formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics actions are all
considered.

ST = Standby Time (or switch over time)

baseline
activity profile

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long
term plans (i.e., LTSP, LTIP, and long term spacecraft operations
plan).

build An assemblage of threads to produce a gradual buildup of system
capabilities.

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software routines,
and ground truth data that are to be used in the data calibration
processing routine.

GL-3 305-CD-049-001

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command and
data handling
(C&DH)

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

command
group

A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution,
but are executed immediately upon reaching their destination on
board. For the U.S. spacecraft, from the perspective of the EOS
Operations Center (EOC), a preplanned command group is
preprocessed by, and stored at, the EOC in preparation for later
uplink. A real-time command group is unplanned in the sense
that it is not preprocessed and stored by the EOC.

detailed
activity
schedules

The schedule for a spacecraft and instruments which covers up to
a 10-day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting
instruments activities are incorporated in the detailed activity
schedule.

direct broadcast Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

EOS Data and
Operations
System

(EDOS)
production
data set

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in
time order, with duplicate data removed, and with quality/
accounting (Q/A) metadata appended. Time span or number of
packets encompassed in a single data set are specified by the
recipient of the data. These data sets are equivalent to Level 0
data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with quality
and accounting information from each individual packet and the
data set itself and with essential formatting information for
unambiguous identification and subsequent processing.

GL-4 305-CD-049-001

housekeeping
data

The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

instrument • A hardware system that collects scientific or operational data.

• Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

• An integrated collection of hardware containing one or more
sensors and associated controls designed to produce data on/in an
observational environment.

instrument
activity
deviation list

An instrument's activity deviations from an existing
instrument activity list, used by the EOC for developing the
detailed activity schedule.

instrument
activity list

An instrument's list of activities that nominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

instrument
engineering
data

Subset of telemetered engineering data required for performing
instrument operations and science processing.

instrument
microprocessor
 memory loads

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

instrument
resource
deviation list

An instrument's anticipated resource deviations from an
existing resource profile, used by the EOC for establishing
TDRSS contact times and building the preliminary resource
schedule.

instrument
resource profile

Anticipated resource needs for an instrument over a target
week, used by the EOC for establishing TDRSS contact times
and building the preliminary resource schedule.

instrument
science data

Data produced by the science sensor(s) of an instrument, usually
constituting the mission of that instrument.

long-term
instrument
plan (LTIP)

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated approximately
every six months and covers a period of up to approximately 5
years.

GL-5 305-CD-049-001

long-term
science plan
(LTSP)

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six months and covers a period of up to approximately five
years.

long term
spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

mean time
between failure
(MTBF)

mean down
time (MDT)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/operating
time.

Sum of the mean time to repair MTTR plus the average logistic
delay times.

mean time
between
maintenance
(MTBM)

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow the relationship: 1/MTBM = 1/MTBPM + 1/
MTBCM

mean time to
repair (MTTR)

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design parameters.

object Identifiable encapsulated entities providing one or more services
that clients can request. Objects are created and destroyed as a
result of object requests. Objects are identified by client via
unique reference.

orbit data Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position (including
the time system); some accuracy requirements may be hundreds
of meters while other may be a few centimeters.

playback data Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

GL-6 305-CD-049-001

preliminary
resource
schedule

An initial integrated spacecraft schedule, derived from

instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

preplanned
stored
command

A command issued to an instrument or subsystem to be executed
at some later time. These commands will be collected and
forwarded during an available uplink prior to execution.

principal
investigator
(PI)

An individual who is contracted to conduct a specific scientific
investigation. (An instrument PI is the person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

prototype Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on a faster time scale than the incremental and formal
development track.

raw data Data in their original packets, as received from the spacecraft and
instruments, unprocessed by EDOS.

• Level 0 – Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

• Level 1A – Level 0 data, which may have been reformatted or
transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

• Level 1B – Radiometrically corrected and calibrated data in
physical units at full instrument resolution as acquired.

• Level 2 – Retrieved environmental variables (e.g., ocean wave
height, soil moisture, ice concentration) at the same location and
similar resolution as the Level 1 source data.

• Level 3 – Data or retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from

real-time data Data that are acquired and transmitted immediately to the ground
(as opposed to playback data). Delay is limited to the actual time
required to transmit the data.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s objectives.

GL-7 305-CD-049-001

SCC-stored
commands and
tables

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometime following their storage. The term “core-stored”
applies only to the location where the items are stored on the
spacecraft and instruments; core-stored commands or tables
could be associated with the spacecraft or any of the instruments.

scenario A description of the operation of the system in user’s
terminology including a description of the output response for a
given set of input stimuli. Scenarios are used to define operations
concepts.

segment One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems Management Segment

FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

 • Sensor name: The name of the satellite sensor which was used
to obtain that data.

spacecraft
engineering
data

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

spacecraft
subsystems
activity list

A spacecraft subsystem's list of activities that nominally covers
seven days, used by the EOC for developing the detailed activity
schedule.

spacecraft
subsystems
resource profile

Anticipated resource needs for a spacecraft subsystem over a
target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

target of
opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

GL-8 305-CD-049-001

thread,

as used
in some
Systems
Engineering
documents

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion
of a scenario, or multiple scenarios.

toolkits Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced
	Figure 3.1-1. DMS Context Diagram
	Figure 3.2-1. PDB Ingest Context
	Figure 3.2-2. PDB Ingest Object Model

	3. Data Management Subsystem
	3.1 Data Management Subsystem Context Diagram
	3.2 PDB Ingest
	3.2.1 PDB Ingest Context
	3.2.2 PDB Ingest Interfaces
	3.2.3 PDB Ingest Object Model
	3.2.4. PDB Ingest Dynamic Model
	3.2.5 PDB Ingest Data Dictionary

	3.3 PDB Validation
	3.3.1 PDB Validation Context
	3.3.2 PDB Validation Interfaces
	3.3.3 PDB Validation Object Model
	3.3.4. PDB Validation Dynamic Model
	3.3.5 PDB Validation Data Dictionary

	3.4 PDB Edit
	3.4.1 PDB Edit Context
	3.4.2 PDB Edit Interfaces
	3.4.3 PDB Edit Object Model
	3.4.4 PDB Edit Dynamic Model
	3.4.5 PDB Edit Data Dictionary

	3.5 PDB Report
	3.5.1 PDB Report Context
	3.5.2 PDB Report Interfaces
	3.5.3 PDB Report Object Model
	3.5.4 PDB Report Dynamic Model
	3.5.5 PDB Report Data Dictionary

	3.6 Operational Data Generation
	3.6.1 Operational Data Generation Context
	3.6.2 Operational Data Generation Interfaces
	3.6.3 Operational Data Generation Object Model
	3.6.4. Operational Data Generation Dynamic Model
	3.6.5 Operational Data Generation Data Dictionary

	3.7 DMS Event Processing
	3.7.1 DMS Event Processing Context
	3.7.2 DMS Event Processing Interfaces
	3.7.3 DMS Event Processing Object Model
	3.7.4 DMS Event Processing Dynamic Model

	3.8 DMS Event Retrieval
	3.8.1 DMS Event Retrieval Context
	3.8.2 DMS Event Retrieval Interfaces
	3.8.3 DMS Event Retrieval Object Model
	3.8.4 DMS Event Retrieval Dynamic Model

	3.9 DMS File Management, External Interfaces, Data...
	3.9.1 DMS File Management, External Interfaces, Da...
	3.9.2 DMS File Management, External Interfaces, Da...
	3.9.3 DMS File Management, External Interfaces, Da...
	3.9.4 DMS File Management, External Interfaces, Da...

	3.10 DMS Telemetry Archiver
	3.10.1 DMS Telemetry Archiver Context
	3.10.2 DMS Telemetry Archiver Interfaces
	3.10.3 DMS Telemetry Archiver Object Model
	3.10.4 DMS Telemetry Archival Dynamic Model
	3.10.5 DMS Telemetry Archiver Data Dictionary

	3.11 DMS Telemetry Playback Merger
	3.11.1 DMS Playback Merger Context
	3.11.2 DMS Telemetry Playback Merge Interfaces
	3.11.3 DMS Telemetry Playback Merge Object Model
	3.11.4 DMS Telemetry Playback Merger Dynamic Model...
	3.11.5 DMS Telemetry Playback Merger Data Dictiona...

	3.12 DMS Telemetry Retrieval
	3.12.1 DMS Telemetry Retrieval Context
	3.12.2 DMS Telemetry Retrieval Interfaces
	3.12.3 DMS Telemetry Retrieval Object Model
	3.12.4 DMS Telemetry Retrieval Dynamic Model
	3.12.5 DMS Telemetry Retrieval Data Dictionary

	Figure 3.2-3. PDB Ingest Object Model
	Figure 3.2-4. PDB Ingest Object Model
	Figure 3.2-5. PDB Ingest Object Model
	Figure 3.2-6. PDB Ingest Object Model
	Figure 3.2-7. PDB Ingest Event Trace
	Figure 3.2-8. PDB Ingest State Diagram
	Figure 3.3-1. PDB Validation Object Model
	Figure 3.3-2. PDB Validation Event Trace
	Figure 3.4-1. PDB Edit Object Model
	Figure 3.4-2. PDB Edit Object Model
	Figure 3.4-3. PDB Edit Object Model
	Figure 3.4-4. PDB Edit Object Model
	Figure 3.4-5. PDB Edit Event Trace
	Figure 3.4-6. PDB Edit State Diagram
	Figure 3.5-1. PDB Report Object Model
	Figure 3.5-2. PDB Report Object Model
	Figure 3.5-3. PDB Report Object Model
	Figure 3.5-4. PDB Report Object Model
	Figure 3.5-6. PDB Report Event Trace
	Figure 3.5-7. PDB Report State Diagram
	Figure 3.6-1. Operational Data Generation Object M...
	Figure 3.6-2. Operational Data Generation Object M...
	Figure3.6-3. Operational Data Generation Object Mo...
	Figure 3.6-4. Operational Data Generation Object M...
	Figure 3.6-5. Operational Data Generation Object M...
	Figure 3.6-6. Operational Data Generation Object M...
	Figure 3.6-7. Operational Data Generation Event Tr...
	Figure 3.6-8. Operational Data Generation Event Tr...
	Figure 3.6-9. Operational Data Generation Event Tr...
	Figure 3.6-10. Operational Data Generation Event T...
	Figure 3.6-11. Operational Data Generation State D...
	Figure 3.7-1. DMS Event Processing Context
	Figure 3.7-2 . DMS Event Processing Object Model
	Figure 3.7-3. DMS Event Procesing Event Trace
	Figure 3.8-1. DMS Event Retrieval Context Diagram
	Figure 3.8-2 . DMS Event Retrieval Object Model
	Figure 3.8-3 . DMS Event Retrieval Event Trace
	Figure 3.9-1. DMS File Management, External Interf...
	Figure 3.9-2. DMS File Management, External Interf...
	Figure 3.9-3. DMS File Management, External Interf...
	Figure 3.9-4. DMS File Management, External Interf...
	Figure 3.9-5. DMS File Storage Event Trace
	Figure 3.9-6. DMS File Retrieval Event Trace
	Figure 3.9-7. DMS Sybase Table Access Event Trace
	Figure 3.9-8. DMS FDF Interface Event Trace
	Figure 3.10-1. DMS Telemetry Archiver Context Diag...
	Figure 3.10-2. DMS Telemetry Archiver Object Model...
	Figure 3.10-3. DMS Telemetry Archiver Event Trace
	Figure 3.11-1. DMS Telemetry Playback Merger Conte...
	Figure 3.11-2. DMS Telemetry Playback Merger Objec...
	Figure 3.11-3. DMS Telemetry Playback Merger Scena...
	Figure 3.11-4. DMS Telemetry Playback Merger Scena...
	Figure 3.12-1. DMS Telmetry Retrieval Context Diag...
	Figure 3.12-2. DMS Telemetry Retrieval Object Mode...
	Figure 3.12-3. DMS Telemetry Retrieval Scenario 1 ...
	Figure 3.12-4. DMS Telemetry Retrieval Scenario 2 ...
	Figure 3.12-5. DMS Telemetry Retrieval Scenario 3 ...

	Abbreviations and Acronyms
	Glossary

